Mister Exam

Other calculators:


(n/(1+n))^(5+3*n)

Limit of the function (n/(1+n))^(5+3*n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            5 + 3*n
     /  n  \       
 lim |-----|       
n->oo\1 + n/       
$$\lim_{n \to \infty} \left(\frac{n}{n + 1}\right)^{3 n + 5}$$
Limit((n/(1 + n))^(5 + 3*n), n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty} \left(\frac{n}{n + 1}\right)^{3 n + 5}$$
transform
$$\lim_{n \to \infty} \left(\frac{n}{n + 1}\right)^{3 n + 5}$$
=
$$\lim_{n \to \infty} \left(\frac{\left(n + 1\right) - 1}{n + 1}\right)^{3 n + 5}$$
=
$$\lim_{n \to \infty} \left(- \frac{1}{n + 1} + \frac{n + 1}{n + 1}\right)^{3 n + 5}$$
=
$$\lim_{n \to \infty} \left(1 - \frac{1}{n + 1}\right)^{3 n + 5}$$
=
do replacement
$$u = \frac{n + 1}{-1}$$
then
$$\lim_{n \to \infty} \left(1 - \frac{1}{n + 1}\right)^{3 n + 5}$$ =
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{2 - 3 u}$$
=
$$\lim_{u \to \infty}\left(\left(1 + \frac{1}{u}\right)^{2} \left(1 + \frac{1}{u}\right)^{- 3 u}\right)$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{2} \lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 3 u}$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 3 u}$$
=
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-3}$$
The limit
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-3} = e^{-3}$$

The final answer:
$$\lim_{n \to \infty} \left(\frac{n}{n + 1}\right)^{3 n + 5} = e^{-3}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 -3
e  
$$e^{-3}$$
The graph
Limit of the function (n/(1+n))^(5+3*n)