$$\lim_{x \to 0^-} \left(1 - \sin{\left(x \right)}\right)^{\cot{\left(x \right)}} = e^{-1}$$
More at x→0 from the left$$\lim_{x \to 0^+} \left(1 - \sin{\left(x \right)}\right)^{\cot{\left(x \right)}} = e^{-1}$$
$$\lim_{x \to \infty} \left(1 - \sin{\left(x \right)}\right)^{\cot{\left(x \right)}}$$
More at x→oo$$\lim_{x \to 1^-} \left(1 - \sin{\left(x \right)}\right)^{\cot{\left(x \right)}} = \left(1 - \sin{\left(1 \right)}\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
More at x→1 from the left$$\lim_{x \to 1^+} \left(1 - \sin{\left(x \right)}\right)^{\cot{\left(x \right)}} = \left(1 - \sin{\left(1 \right)}\right)^{\frac{1}{\tan{\left(1 \right)}}}$$
More at x→1 from the right$$\lim_{x \to -\infty} \left(1 - \sin{\left(x \right)}\right)^{\cot{\left(x \right)}}$$
More at x→-oo