Mister Exam

Other calculators:


(1-log(x))/x^2

Limit of the function (1-log(x))/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1 - log(x)\
 lim |----------|
x->oo|     2    |
     \    x     /
limx(1log(x)x2)\lim_{x \to \infty}\left(\frac{1 - \log{\left(x \right)}}{x^{2}}\right)
Limit((1 - log(x))/x^2, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
-oo/oo,

i.e. limit for the numerator is
limx(1log(x))=\lim_{x \to \infty}\left(1 - \log{\left(x \right)}\right) = -\infty
and limit for the denominator is
limxx2=\lim_{x \to \infty} x^{2} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(1log(x)x2)\lim_{x \to \infty}\left(\frac{1 - \log{\left(x \right)}}{x^{2}}\right)
=
limx(ddx(1log(x))ddxx2)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(1 - \log{\left(x \right)}\right)}{\frac{d}{d x} x^{2}}\right)
=
limx(12x2)\lim_{x \to \infty}\left(- \frac{1}{2 x^{2}}\right)
=
limx(12x2)\lim_{x \to \infty}\left(- \frac{1}{2 x^{2}}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-500500
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(1log(x)x2)=0\lim_{x \to \infty}\left(\frac{1 - \log{\left(x \right)}}{x^{2}}\right) = 0
limx0(1log(x)x2)=\lim_{x \to 0^-}\left(\frac{1 - \log{\left(x \right)}}{x^{2}}\right) = \infty
More at x→0 from the left
limx0+(1log(x)x2)=\lim_{x \to 0^+}\left(\frac{1 - \log{\left(x \right)}}{x^{2}}\right) = \infty
More at x→0 from the right
limx1(1log(x)x2)=1\lim_{x \to 1^-}\left(\frac{1 - \log{\left(x \right)}}{x^{2}}\right) = 1
More at x→1 from the left
limx1+(1log(x)x2)=1\lim_{x \to 1^+}\left(\frac{1 - \log{\left(x \right)}}{x^{2}}\right) = 1
More at x→1 from the right
limx(1log(x)x2)=0\lim_{x \to -\infty}\left(\frac{1 - \log{\left(x \right)}}{x^{2}}\right) = 0
More at x→-oo
The graph
Limit of the function (1-log(x))/x^2