Mister Exam

Other calculators


(1-log(x))/x^2

Derivative of (1-log(x))/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 - log(x)
----------
     2    
    x     
1log(x)x2\frac{1 - \log{\left(x \right)}}{x^{2}}
(1 - log(x))/x^2
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=1log(x)f{\left(x \right)} = 1 - \log{\left(x \right)} and g(x)=x2g{\left(x \right)} = x^{2}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 1log(x)1 - \log{\left(x \right)} term by term:

      1. The derivative of the constant 11 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

        So, the result is: 1x- \frac{1}{x}

      The result is: 1x- \frac{1}{x}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    Now plug in to the quotient rule:

    2x(1log(x))xx4\frac{- 2 x \left(1 - \log{\left(x \right)}\right) - x}{x^{4}}

  2. Now simplify:

    2log(x)3x3\frac{2 \log{\left(x \right)} - 3}{x^{3}}


The answer is:

2log(x)3x3\frac{2 \log{\left(x \right)} - 3}{x^{3}}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
   1     2*(1 - log(x))
- ---- - --------------
     2          3      
  x*x          x       
1xx22(1log(x))x3- \frac{1}{x x^{2}} - \frac{2 \left(1 - \log{\left(x \right)}\right)}{x^{3}}
The second derivative [src]
11 - 6*log(x)
-------------
       4     
      x      
116log(x)x4\frac{11 - 6 \log{\left(x \right)}}{x^{4}}
The third derivative [src]
2*(-25 + 12*log(x))
-------------------
          5        
         x         
2(12log(x)25)x5\frac{2 \left(12 \log{\left(x \right)} - 25\right)}{x^{5}}
The graph
Derivative of (1-log(x))/x^2