$$\lim_{x \to e^-}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 0$$ More at x→E from the left $$\lim_{x \to e^+}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 0$$ $$\lim_{x \to \infty}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 0$$ More at x→oo $$\lim_{x \to 0^-}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = -\infty$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = \infty$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 1$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 1$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 0$$ More at x→-oo