Mister Exam

Other calculators:


(1-log(x))/x

Limit of the function (1-log(x))/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1 - log(x)\
 lim |----------|
x->E+\    x     /
limxe+(1log(x)x)\lim_{x \to e^+}\left(\frac{1 - \log{\left(x \right)}}{x}\right)
Limit((1 - log(x))/x, x, E)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
012345-5-4-3-2-1-100100
Rapid solution [src]
0
00
One‐sided limits [src]
     /1 - log(x)\
 lim |----------|
x->E+\    x     /
limxe+(1log(x)x)\lim_{x \to e^+}\left(\frac{1 - \log{\left(x \right)}}{x}\right)
0
00
= 1.95647031552306e-17
     /1 - log(x)\
 lim |----------|
x->E-\    x     /
limxe(1log(x)x)\lim_{x \to e^-}\left(\frac{1 - \log{\left(x \right)}}{x}\right)
0
00
= 1.95647031552307e-17
= 1.95647031552307e-17
Other limits x→0, -oo, +oo, 1
limxe(1log(x)x)=0\lim_{x \to e^-}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 0
More at x→E from the left
limxe+(1log(x)x)=0\lim_{x \to e^+}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 0
limx(1log(x)x)=0\lim_{x \to \infty}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 0
More at x→oo
limx0(1log(x)x)=\lim_{x \to 0^-}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = -\infty
More at x→0 from the left
limx0+(1log(x)x)=\lim_{x \to 0^+}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = \infty
More at x→0 from the right
limx1(1log(x)x)=1\lim_{x \to 1^-}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 1
More at x→1 from the left
limx1+(1log(x)x)=1\lim_{x \to 1^+}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 1
More at x→1 from the right
limx(1log(x)x)=0\lim_{x \to -\infty}\left(\frac{1 - \log{\left(x \right)}}{x}\right) = 0
More at x→-oo
Numerical answer [src]
1.95647031552306e-17
1.95647031552306e-17
The graph
Limit of the function (1-log(x))/x