$$\lim_{x \to 0^-}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = -\infty$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = -\infty$$
$$\lim_{x \to \infty}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = 1$$
More at x→oo$$\lim_{x \to 1^-}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = 1 - \cos{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = 1 - \cos{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = 1$$
More at x→-oo