Mister Exam

Other calculators:


1-cos(x)/x^2

Limit of the function 1-cos(x)/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    cos(x)\
 lim |1 - ------|
x->0+|       2  |
     \      x   /
$$\lim_{x \to 0^+}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right)$$
Limit(1 - cos(x)/x^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     /    cos(x)\
 lim |1 - ------|
x->0+|       2  |
     \      x   /
$$\lim_{x \to 0^+}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right)$$
-oo
$$-\infty$$
= -22799.5000018274
     /    cos(x)\
 lim |1 - ------|
x->0-|       2  |
     \      x   /
$$\lim_{x \to 0^-}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right)$$
-oo
$$-\infty$$
= -22799.5000018274
= -22799.5000018274
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = -\infty$$
$$\lim_{x \to \infty}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = 1$$
More at x→oo
$$\lim_{x \to 1^-}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = 1 - \cos{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = 1 - \cos{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(1 - \frac{\cos{\left(x \right)}}{x^{2}}\right) = 1$$
More at x→-oo
Rapid solution [src]
-oo
$$-\infty$$
Numerical answer [src]
-22799.5000018274
-22799.5000018274
The graph
Limit of the function 1-cos(x)/x^2