Mister Exam

Other calculators:


1/(x^2+2*x)

Limit of the function 1/(x^2+2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1    
 lim --------
x->oo 2      
     x  + 2*x
$$\lim_{x \to \infty} \frac{1}{x^{2} + 2 x}$$
Limit(1/(x^2 + 2*x), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \frac{1}{x^{2} + 2 x}$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty} \frac{1}{x^{2} + 2 x}$$ =
$$\lim_{x \to \infty}\left(\frac{1}{x^{2} \left(1 + \frac{2}{x}\right)}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1}{x^{2} \left(1 + \frac{2}{x}\right)}\right) = \lim_{u \to 0^+}\left(\frac{u^{2}}{2 u + 1}\right)$$
=
$$\frac{0^{2}}{0 \cdot 2 + 1} = 0$$

The final answer:
$$\lim_{x \to \infty} \frac{1}{x^{2} + 2 x} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{x^{2} + 2 x} = 0$$
$$\lim_{x \to 0^-} \frac{1}{x^{2} + 2 x} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{2} + 2 x} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{x^{2} + 2 x} = \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{2} + 2 x} = \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{x^{2} + 2 x} = 0$$
More at x→-oo
The graph
Limit of the function 1/(x^2+2*x)