$$\lim_{x \to 0^-}\left(\frac{2 x \sin{\left(5 x \right)}}{5}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{2 x \sin{\left(5 x \right)}}{5}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{2 x \sin{\left(5 x \right)}}{5}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo$$\lim_{x \to 1^-}\left(\frac{2 x \sin{\left(5 x \right)}}{5}\right) = \frac{2 \sin{\left(5 \right)}}{5}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{2 x \sin{\left(5 x \right)}}{5}\right) = \frac{2 \sin{\left(5 \right)}}{5}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{2 x \sin{\left(5 x \right)}}{5}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo