Mister Exam

Limit of the function 1/9

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (1/9)
n->oo     
limn19\lim_{n \to \infty} \frac{1}{9}
Limit(1/9, n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.00
Rapid solution [src]
1/9
19\frac{1}{9}
Other limits n→0, -oo, +oo, 1
limn19=19\lim_{n \to \infty} \frac{1}{9} = \frac{1}{9}
limn019=19\lim_{n \to 0^-} \frac{1}{9} = \frac{1}{9}
More at n→0 from the left
limn0+19=19\lim_{n \to 0^+} \frac{1}{9} = \frac{1}{9}
More at n→0 from the right
limn119=19\lim_{n \to 1^-} \frac{1}{9} = \frac{1}{9}
More at n→1 from the left
limn1+19=19\lim_{n \to 1^+} \frac{1}{9} = \frac{1}{9}
More at n→1 from the right
limn19=19\lim_{n \to -\infty} \frac{1}{9} = \frac{1}{9}
More at n→-oo
The graph
Limit of the function 1/9