$$\lim_{n \to \infty} \frac{1}{n \log{\left(n \right)}} = 0$$ $$\lim_{n \to 0^-} \frac{1}{n \log{\left(n \right)}} = \infty$$ More at n→0 from the left $$\lim_{n \to 0^+} \frac{1}{n \log{\left(n \right)}} = -\infty$$ More at n→0 from the right $$\lim_{n \to 1^-} \frac{1}{n \log{\left(n \right)}} = -\infty$$ More at n→1 from the left $$\lim_{n \to 1^+} \frac{1}{n \log{\left(n \right)}} = \infty$$ More at n→1 from the right $$\lim_{n \to -\infty} \frac{1}{n \log{\left(n \right)}} = 0$$ More at n→-oo