Mister Exam

Other calculators:


1/(n*log(n))

Limit of the function 1/(n*log(n))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1    
 lim --------
n->oon*log(n)
limn1nlog(n)\lim_{n \to \infty} \frac{1}{n \log{\left(n \right)}}
Limit(1/(n*log(n)), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Rapid solution [src]
0
00
Other limits n→0, -oo, +oo, 1
limn1nlog(n)=0\lim_{n \to \infty} \frac{1}{n \log{\left(n \right)}} = 0
limn01nlog(n)=\lim_{n \to 0^-} \frac{1}{n \log{\left(n \right)}} = \infty
More at n→0 from the left
limn0+1nlog(n)=\lim_{n \to 0^+} \frac{1}{n \log{\left(n \right)}} = -\infty
More at n→0 from the right
limn11nlog(n)=\lim_{n \to 1^-} \frac{1}{n \log{\left(n \right)}} = -\infty
More at n→1 from the left
limn1+1nlog(n)=\lim_{n \to 1^+} \frac{1}{n \log{\left(n \right)}} = \infty
More at n→1 from the right
limn1nlog(n)=0\lim_{n \to -\infty} \frac{1}{n \log{\left(n \right)}} = 0
More at n→-oo
The graph
Limit of the function 1/(n*log(n))