Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((5+6*x)/(-10+x))^(5*x)
Limit of (-2+x)^(-2)
Limit of -5-2*x^2+8*x
Limit of (sin(x)+tan(x))/(2*x)
Sum of series
:
1/(n*log(n))
Graphing y =
:
1/(n*log(n))
Identical expressions
one /(n*log(n))
1 divide by (n multiply by logarithm of (n))
one divide by (n multiply by logarithm of (n))
1/(nlog(n))
1/nlogn
1 divide by (n*log(n))
Similar expressions
1/(n*log(n)^3)
1/(n*log(n)*log(log(n)))
1/(n*log(n)^2)
1/(n*log(n)^4)
Limit of the function
/
1/(n*log(n))
Limit of the function 1/(n*log(n))
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim -------- n->oon*log(n)
lim
n
→
∞
1
n
log
(
n
)
\lim_{n \to \infty} \frac{1}{n \log{\left(n \right)}}
n
→
∞
lim
n
lo
g
(
n
)
1
Limit(1/(n*log(n)), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-20
20
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
1
n
log
(
n
)
=
0
\lim_{n \to \infty} \frac{1}{n \log{\left(n \right)}} = 0
n
→
∞
lim
n
lo
g
(
n
)
1
=
0
lim
n
→
0
−
1
n
log
(
n
)
=
∞
\lim_{n \to 0^-} \frac{1}{n \log{\left(n \right)}} = \infty
n
→
0
−
lim
n
lo
g
(
n
)
1
=
∞
More at n→0 from the left
lim
n
→
0
+
1
n
log
(
n
)
=
−
∞
\lim_{n \to 0^+} \frac{1}{n \log{\left(n \right)}} = -\infty
n
→
0
+
lim
n
lo
g
(
n
)
1
=
−
∞
More at n→0 from the right
lim
n
→
1
−
1
n
log
(
n
)
=
−
∞
\lim_{n \to 1^-} \frac{1}{n \log{\left(n \right)}} = -\infty
n
→
1
−
lim
n
lo
g
(
n
)
1
=
−
∞
More at n→1 from the left
lim
n
→
1
+
1
n
log
(
n
)
=
∞
\lim_{n \to 1^+} \frac{1}{n \log{\left(n \right)}} = \infty
n
→
1
+
lim
n
lo
g
(
n
)
1
=
∞
More at n→1 from the right
lim
n
→
−
∞
1
n
log
(
n
)
=
0
\lim_{n \to -\infty} \frac{1}{n \log{\left(n \right)}} = 0
n
→
−
∞
lim
n
lo
g
(
n
)
1
=
0
More at n→-oo
The graph