Mister Exam

Other calculators:


1/(n*log(n)^4)

Limit of the function 1/(n*log(n)^4)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      1    \
 lim |1*---------|
n->oo|       4   |
     \  n*log (n)/
limn(11nlog(n)4)\lim_{n \to \infty}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right)
Limit(1/(n*log(n)^4), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010020000
Rapid solution [src]
0
00
Other limits n→0, -oo, +oo, 1
limn(11nlog(n)4)=0\lim_{n \to \infty}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = 0
limn0(11nlog(n)4)=\lim_{n \to 0^-}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = -\infty
More at n→0 from the left
limn0+(11nlog(n)4)=\lim_{n \to 0^+}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = \infty
More at n→0 from the right
limn1(11nlog(n)4)=\lim_{n \to 1^-}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = \infty
More at n→1 from the left
limn1+(11nlog(n)4)=\lim_{n \to 1^+}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = \infty
More at n→1 from the right
limn(11nlog(n)4)=0\lim_{n \to -\infty}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = 0
More at n→-oo
The graph
Limit of the function 1/(n*log(n)^4)