Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of n*(1+(1+n)^2)/((1+n)*(1+n^2))
Limit of -2+|-2+x|/x
Limit of (1+x^2+9*x)/(-5+2*x+7*x^2)
Limit of (x^2-6*x)/(6+x^2-7*x)
Identical expressions
one /(n*log(n)^ four)
1 divide by (n multiply by logarithm of (n) to the power of 4)
one divide by (n multiply by logarithm of (n) to the power of four)
1/(n*log(n)4)
1/n*logn4
1/(n*log(n)⁴)
1/(nlog(n)^4)
1/(nlog(n)4)
1/nlogn4
1/nlogn^4
1 divide by (n*log(n)^4)
Limit of the function
/
1/(n*log(n)^4)
Limit of the function 1/(n*log(n)^4)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 1 \ lim |1*---------| n->oo| 4 | \ n*log (n)/
lim
n
→
∞
(
1
⋅
1
n
log
(
n
)
4
)
\lim_{n \to \infty}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right)
n
→
∞
lim
(
1
⋅
n
lo
g
(
n
)
4
1
)
Limit(1/(n*log(n)^4), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
20000
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
(
1
⋅
1
n
log
(
n
)
4
)
=
0
\lim_{n \to \infty}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = 0
n
→
∞
lim
(
1
⋅
n
lo
g
(
n
)
4
1
)
=
0
lim
n
→
0
−
(
1
⋅
1
n
log
(
n
)
4
)
=
−
∞
\lim_{n \to 0^-}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = -\infty
n
→
0
−
lim
(
1
⋅
n
lo
g
(
n
)
4
1
)
=
−
∞
More at n→0 from the left
lim
n
→
0
+
(
1
⋅
1
n
log
(
n
)
4
)
=
∞
\lim_{n \to 0^+}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = \infty
n
→
0
+
lim
(
1
⋅
n
lo
g
(
n
)
4
1
)
=
∞
More at n→0 from the right
lim
n
→
1
−
(
1
⋅
1
n
log
(
n
)
4
)
=
∞
\lim_{n \to 1^-}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = \infty
n
→
1
−
lim
(
1
⋅
n
lo
g
(
n
)
4
1
)
=
∞
More at n→1 from the left
lim
n
→
1
+
(
1
⋅
1
n
log
(
n
)
4
)
=
∞
\lim_{n \to 1^+}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = \infty
n
→
1
+
lim
(
1
⋅
n
lo
g
(
n
)
4
1
)
=
∞
More at n→1 from the right
lim
n
→
−
∞
(
1
⋅
1
n
log
(
n
)
4
)
=
0
\lim_{n \to -\infty}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = 0
n
→
−
∞
lim
(
1
⋅
n
lo
g
(
n
)
4
1
)
=
0
More at n→-oo
The graph