$$\lim_{n \to \infty}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = 0$$
$$\lim_{n \to 0^-}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = -\infty$$
More at n→0 from the left$$\lim_{n \to 0^+}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = \infty$$
More at n→0 from the right$$\lim_{n \to 1^-}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = \infty$$
More at n→1 from the left$$\lim_{n \to 1^+}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = \infty$$
More at n→1 from the right$$\lim_{n \to -\infty}\left(1 \cdot \frac{1}{n \log{\left(n \right)}^{4}}\right) = 0$$
More at n→-oo