Mister Exam

Other calculators:


1/cosh(x)

Limit of the function 1/cosh(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1   
 lim -------
x->oocosh(x)
limx1cosh(x)\lim_{x \to \infty} \frac{1}{\cosh{\left(x \right)}}
Limit(1/cosh(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101002
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx1cosh(x)=0\lim_{x \to \infty} \frac{1}{\cosh{\left(x \right)}} = 0
limx01cosh(x)=1\lim_{x \to 0^-} \frac{1}{\cosh{\left(x \right)}} = 1
More at x→0 from the left
limx0+1cosh(x)=1\lim_{x \to 0^+} \frac{1}{\cosh{\left(x \right)}} = 1
More at x→0 from the right
limx11cosh(x)=2e1+e2\lim_{x \to 1^-} \frac{1}{\cosh{\left(x \right)}} = \frac{2 e}{1 + e^{2}}
More at x→1 from the left
limx1+1cosh(x)=2e1+e2\lim_{x \to 1^+} \frac{1}{\cosh{\left(x \right)}} = \frac{2 e}{1 + e^{2}}
More at x→1 from the right
limx1cosh(x)=0\lim_{x \to -\infty} \frac{1}{\cosh{\left(x \right)}} = 0
More at x→-oo
The graph
Limit of the function 1/cosh(x)