Mister Exam

Other calculators:


1/cosh(x)

Limit of the function 1/cosh(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1   
 lim -------
x->oocosh(x)
$$\lim_{x \to \infty} \frac{1}{\cosh{\left(x \right)}}$$
Limit(1/cosh(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{\cosh{\left(x \right)}} = 0$$
$$\lim_{x \to 0^-} \frac{1}{\cosh{\left(x \right)}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{\cosh{\left(x \right)}} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{\cosh{\left(x \right)}} = \frac{2 e}{1 + e^{2}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{\cosh{\left(x \right)}} = \frac{2 e}{1 + e^{2}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{\cosh{\left(x \right)}} = 0$$
More at x→-oo
The graph
Limit of the function 1/cosh(x)