Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 7*tan(9*x/5)/x
Limit of sin(5*x)
Limit of (-5+2*x+3*x^4)/(7+x+2*x^2)
Limit of log(1+x)
Integral of d{x}
:
1/cosh(x)
Identical expressions
one /cosh(x)
1 divide by hyperbolic co sinus of e of ine of (x)
one divide by hyperbolic co sinus of e of ine of (x)
1/coshx
1 divide by cosh(x)
Limit of the function
/
1/cosh(x)
Limit of the function 1/cosh(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim ------- x->oocosh(x)
lim
x
→
∞
1
cosh
(
x
)
\lim_{x \to \infty} \frac{1}{\cosh{\left(x \right)}}
x
→
∞
lim
cosh
(
x
)
1
Limit(1/cosh(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
2
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
1
cosh
(
x
)
=
0
\lim_{x \to \infty} \frac{1}{\cosh{\left(x \right)}} = 0
x
→
∞
lim
cosh
(
x
)
1
=
0
lim
x
→
0
−
1
cosh
(
x
)
=
1
\lim_{x \to 0^-} \frac{1}{\cosh{\left(x \right)}} = 1
x
→
0
−
lim
cosh
(
x
)
1
=
1
More at x→0 from the left
lim
x
→
0
+
1
cosh
(
x
)
=
1
\lim_{x \to 0^+} \frac{1}{\cosh{\left(x \right)}} = 1
x
→
0
+
lim
cosh
(
x
)
1
=
1
More at x→0 from the right
lim
x
→
1
−
1
cosh
(
x
)
=
2
e
1
+
e
2
\lim_{x \to 1^-} \frac{1}{\cosh{\left(x \right)}} = \frac{2 e}{1 + e^{2}}
x
→
1
−
lim
cosh
(
x
)
1
=
1
+
e
2
2
e
More at x→1 from the left
lim
x
→
1
+
1
cosh
(
x
)
=
2
e
1
+
e
2
\lim_{x \to 1^+} \frac{1}{\cosh{\left(x \right)}} = \frac{2 e}{1 + e^{2}}
x
→
1
+
lim
cosh
(
x
)
1
=
1
+
e
2
2
e
More at x→1 from the right
lim
x
→
−
∞
1
cosh
(
x
)
=
0
\lim_{x \to -\infty} \frac{1}{\cosh{\left(x \right)}} = 0
x
→
−
∞
lim
cosh
(
x
)
1
=
0
More at x→-oo
The graph