Mister Exam

Other calculators:


1/(4+x^2)

Limit of the function 1/(4+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1   
 lim  ------
x->-oo     2
      4 + x 
limx1x2+4\lim_{x \to -\infty} \frac{1}{x^{2} + 4}
Limit(1/(4 + x^2), x, -oo)
Detail solution
Let's take the limit
limx1x2+4\lim_{x \to -\infty} \frac{1}{x^{2} + 4}
Let's divide numerator and denominator by x^2:
limx1x2+4\lim_{x \to -\infty} \frac{1}{x^{2} + 4} =
limx(1x2(1+4x2))\lim_{x \to -\infty}\left(\frac{1}{x^{2} \left(1 + \frac{4}{x^{2}}\right)}\right)
Do Replacement
u=1xu = \frac{1}{x}
then
limx(1x2(1+4x2))=limu0+(u24u2+1)\lim_{x \to -\infty}\left(\frac{1}{x^{2} \left(1 + \frac{4}{x^{2}}\right)}\right) = \lim_{u \to 0^+}\left(\frac{u^{2}}{4 u^{2} + 1}\right)
=
02402+1=0\frac{0^{2}}{4 \cdot 0^{2} + 1} = 0

The final answer:
limx1x2+4=0\lim_{x \to -\infty} \frac{1}{x^{2} + 4} = 0
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100.000.50
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx1x2+4=0\lim_{x \to -\infty} \frac{1}{x^{2} + 4} = 0
limx1x2+4=0\lim_{x \to \infty} \frac{1}{x^{2} + 4} = 0
More at x→oo
limx01x2+4=14\lim_{x \to 0^-} \frac{1}{x^{2} + 4} = \frac{1}{4}
More at x→0 from the left
limx0+1x2+4=14\lim_{x \to 0^+} \frac{1}{x^{2} + 4} = \frac{1}{4}
More at x→0 from the right
limx11x2+4=15\lim_{x \to 1^-} \frac{1}{x^{2} + 4} = \frac{1}{5}
More at x→1 from the left
limx1+1x2+4=15\lim_{x \to 1^+} \frac{1}{x^{2} + 4} = \frac{1}{5}
More at x→1 from the right
The graph
Limit of the function 1/(4+x^2)