Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of x^2*(1/3-cos(8*x)/3)
Limit of (-2+x^2-x)/(-2+x+3*x^2)
Limit of (-1+sin(x))/cos(x)
Limit of (-2*sin(x)+sin(2*x))/(x*log(cos(5*x)))
Integral of d{x}
:
1/(4+x^2)
Sum of series
:
1/(4+x^2)
Identical expressions
one /(four +x^ two)
1 divide by (4 plus x squared )
one divide by (four plus x to the power of two)
1/(4+x2)
1/4+x2
1/(4+x²)
1/(4+x to the power of 2)
1/4+x^2
1 divide by (4+x^2)
Similar expressions
(-1+8*x^3)/(-1/4+x^2)
1/(4-x^2)
Limit of the function
/
1/(4+x^2)
Limit of the function 1/(4+x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim ------ x->-oo 2 4 + x
$$\lim_{x \to -\infty} \frac{1}{x^{2} + 4}$$
Limit(1/(4 + x^2), x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty} \frac{1}{x^{2} + 4}$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to -\infty} \frac{1}{x^{2} + 4}$$ =
$$\lim_{x \to -\infty}\left(\frac{1}{x^{2} \left(1 + \frac{4}{x^{2}}\right)}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{1}{x^{2} \left(1 + \frac{4}{x^{2}}\right)}\right) = \lim_{u \to 0^+}\left(\frac{u^{2}}{4 u^{2} + 1}\right)$$
=
$$\frac{0^{2}}{4 \cdot 0^{2} + 1} = 0$$
The final answer:
$$\lim_{x \to -\infty} \frac{1}{x^{2} + 4} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty} \frac{1}{x^{2} + 4} = 0$$
$$\lim_{x \to \infty} \frac{1}{x^{2} + 4} = 0$$
More at x→oo
$$\lim_{x \to 0^-} \frac{1}{x^{2} + 4} = \frac{1}{4}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{2} + 4} = \frac{1}{4}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{x^{2} + 4} = \frac{1}{5}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{2} + 4} = \frac{1}{5}$$
More at x→1 from the right
The graph