Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-9+x^2)/(15+x^2-8*x)
Limit of ((1+2*x)/(-1+x))^x
Limit of (-1+e^x)/sin(x)
Limit of (1+e^x)^(1/x)
Derivative of
:
1/cos(x)
Graphing y =
:
1/cos(x)
Integral of d{x}
:
1/cos(x)
Identical expressions
one /cos(x)
1 divide by co sinus of e of (x)
one divide by co sinus of e of (x)
1/cosx
1 divide by cos(x)
Similar expressions
1/(cos(x)+sin(x))
cos(x)^(1/cos(x/2))
1/cosx
Limit of the function
/
1/cos(x)
Limit of the function 1/cos(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim ------ x->oocos(x)
lim
x
→
∞
1
cos
(
x
)
\lim_{x \to \infty} \frac{1}{\cos{\left(x \right)}}
x
→
∞
lim
cos
(
x
)
1
Limit(1/cos(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-50
50
Plot the graph
Rapid solution
[src]
<-oo, oo>
⟨
−
∞
,
∞
⟩
\left\langle -\infty, \infty\right\rangle
⟨
−
∞
,
∞
⟩
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
1
cos
(
x
)
=
⟨
−
∞
,
∞
⟩
\lim_{x \to \infty} \frac{1}{\cos{\left(x \right)}} = \left\langle -\infty, \infty\right\rangle
x
→
∞
lim
cos
(
x
)
1
=
⟨
−
∞
,
∞
⟩
lim
x
→
0
−
1
cos
(
x
)
=
1
\lim_{x \to 0^-} \frac{1}{\cos{\left(x \right)}} = 1
x
→
0
−
lim
cos
(
x
)
1
=
1
More at x→0 from the left
lim
x
→
0
+
1
cos
(
x
)
=
1
\lim_{x \to 0^+} \frac{1}{\cos{\left(x \right)}} = 1
x
→
0
+
lim
cos
(
x
)
1
=
1
More at x→0 from the right
lim
x
→
1
−
1
cos
(
x
)
=
1
cos
(
1
)
\lim_{x \to 1^-} \frac{1}{\cos{\left(x \right)}} = \frac{1}{\cos{\left(1 \right)}}
x
→
1
−
lim
cos
(
x
)
1
=
cos
(
1
)
1
More at x→1 from the left
lim
x
→
1
+
1
cos
(
x
)
=
1
cos
(
1
)
\lim_{x \to 1^+} \frac{1}{\cos{\left(x \right)}} = \frac{1}{\cos{\left(1 \right)}}
x
→
1
+
lim
cos
(
x
)
1
=
cos
(
1
)
1
More at x→1 from the right
lim
x
→
−
∞
1
cos
(
x
)
=
⟨
−
∞
,
∞
⟩
\lim_{x \to -\infty} \frac{1}{\cos{\left(x \right)}} = \left\langle -\infty, \infty\right\rangle
x
→
−
∞
lim
cos
(
x
)
1
=
⟨
−
∞
,
∞
⟩
More at x→-oo
The graph