Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$
The second derivative
[src]
2
2*sin (x)
1 + ---------
2
cos (x)
-------------
cos(x)
$$\frac{\frac{2 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1}{\cos{\left(x \right)}}$$
The third derivative
[src]
/ 2 \
| 6*sin (x)|
|5 + ---------|*sin(x)
| 2 |
\ cos (x) /
----------------------
2
cos (x)
$$\frac{\left(\frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 5\right) \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$