Mister Exam

Other calculators:


1/cos(2*x)

Limit of the function 1/cos(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1    
 lim --------
x->0+cos(2*x)
$$\lim_{x \to 0^+} \frac{1}{\cos{\left(2 x \right)}}$$
Limit(1/cos(2*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
        1    
 lim --------
x->0+cos(2*x)
$$\lim_{x \to 0^+} \frac{1}{\cos{\left(2 x \right)}}$$
1
$$1$$
= 1.0
        1    
 lim --------
x->0-cos(2*x)
$$\lim_{x \to 0^-} \frac{1}{\cos{\left(2 x \right)}}$$
1
$$1$$
= 1.0
= 1.0
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{1}{\cos{\left(2 x \right)}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{\cos{\left(2 x \right)}} = 1$$
$$\lim_{x \to \infty} \frac{1}{\cos{\left(2 x \right)}} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \frac{1}{\cos{\left(2 x \right)}} = \frac{1}{\cos{\left(2 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{\cos{\left(2 x \right)}} = \frac{1}{\cos{\left(2 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{\cos{\left(2 x \right)}} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function 1/cos(2*x)