We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 1^+}\left(x - 1\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 1^+} \frac{1}{\cot{\left(\pi \left(x - 1\right) \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 1^+}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{\frac{d}{d x} \left(x - 1\right)}{\frac{d}{d x} \frac{1}{\cot{\left(\pi \left(x - 1\right) \right)}}}\right)$$
=
$$\lim_{x \to 1^+}\left(- \frac{\cot^{2}{\left(\pi x \right)}}{\pi \left(- \cot^{2}{\left(\pi x \right)} - 1\right)}\right)$$
=
$$\lim_{x \to 1^+}\left(- \frac{\cot^{2}{\left(\pi x \right)}}{\pi \left(- \cot^{2}{\left(\pi x \right)} - 1\right)}\right)$$
=
$$\frac{1}{\pi}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)