Mister Exam

Other calculators:

Limit of the function (-1+x)*cot(pi*(-1+x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim ((-1 + x)*cot(pi*(-1 + x)))
x->1+                           
$$\lim_{x \to 1^+}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right)$$
Limit((-1 + x)*cot(pi*(-1 + x)), x, 1)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 1^+}\left(x - 1\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 1^+} \frac{1}{\cot{\left(\pi \left(x - 1\right) \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 1^+}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{\frac{d}{d x} \left(x - 1\right)}{\frac{d}{d x} \frac{1}{\cot{\left(\pi \left(x - 1\right) \right)}}}\right)$$
=
$$\lim_{x \to 1^+}\left(- \frac{\cot^{2}{\left(\pi x \right)}}{\pi \left(- \cot^{2}{\left(\pi x \right)} - 1\right)}\right)$$
=
$$\lim_{x \to 1^+}\left(- \frac{\cot^{2}{\left(\pi x \right)}}{\pi \left(- \cot^{2}{\left(\pi x \right)} - 1\right)}\right)$$
=
$$\frac{1}{\pi}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
One‐sided limits [src]
 lim ((-1 + x)*cot(pi*(-1 + x)))
x->1+                           
$$\lim_{x \to 1^+}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right)$$
1 
--
pi
$$\frac{1}{\pi}$$
= 0.318309886183791
 lim ((-1 + x)*cot(pi*(-1 + x)))
x->1-                           
$$\lim_{x \to 1^-}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right)$$
1 
--
pi
$$\frac{1}{\pi}$$
= 0.318309886183791
= 0.318309886183791
Rapid solution [src]
1 
--
pi
$$\frac{1}{\pi}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right) = \frac{1}{\pi}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right) = \frac{1}{\pi}$$
$$\lim_{x \to \infty}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\left(x - 1\right) \cot{\left(\pi \left(x - 1\right) \right)}\right)$$
More at x→-oo
Numerical answer [src]
0.318309886183791
0.318309886183791