Mister Exam

Derivative of 1/cos(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   1    
--------
cos(2*x)
$$\frac{1}{\cos{\left(2 x \right)}}$$
1/cos(2*x)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
2*sin(2*x)
----------
   2      
cos (2*x) 
$$\frac{2 \sin{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}}$$
The second derivative [src]
  /         2     \
  |    2*sin (2*x)|
4*|1 + -----------|
  |        2      |
  \     cos (2*x) /
-------------------
      cos(2*x)     
$$\frac{4 \left(\frac{2 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 1\right)}{\cos{\left(2 x \right)}}$$
The third derivative [src]
  /         2     \         
  |    6*sin (2*x)|         
8*|5 + -----------|*sin(2*x)
  |        2      |         
  \     cos (2*x) /         
----------------------------
            2               
         cos (2*x)          
$$\frac{8 \left(\frac{6 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 5\right) \sin{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}}$$