Mister Exam

Other calculators:


9+x

Limit of the function 9+x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (9 + x)
x->oo       
limx(x+9)\lim_{x \to \infty}\left(x + 9\right)
Limit(9 + x, x, oo, dir='-')
Detail solution
Let's take the limit
limx(x+9)\lim_{x \to \infty}\left(x + 9\right)
Let's divide numerator and denominator by x:
limx(x+9)\lim_{x \to \infty}\left(x + 9\right) =
limx(1+9x1x)\lim_{x \to \infty}\left(\frac{1 + \frac{9}{x}}{\frac{1}{x}}\right)
Do Replacement
u=1xu = \frac{1}{x}
then
limx(1+9x1x)=limu0+(9u+1u)\lim_{x \to \infty}\left(\frac{1 + \frac{9}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{9 u + 1}{u}\right)
=
09+10=\frac{0 \cdot 9 + 1}{0} = \infty

The final answer:
limx(x+9)=\lim_{x \to \infty}\left(x + 9\right) = \infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(x+9)=\lim_{x \to \infty}\left(x + 9\right) = \infty
limx0(x+9)=9\lim_{x \to 0^-}\left(x + 9\right) = 9
More at x→0 from the left
limx0+(x+9)=9\lim_{x \to 0^+}\left(x + 9\right) = 9
More at x→0 from the right
limx1(x+9)=10\lim_{x \to 1^-}\left(x + 9\right) = 10
More at x→1 from the left
limx1+(x+9)=10\lim_{x \to 1^+}\left(x + 9\right) = 10
More at x→1 from the right
limx(x+9)=\lim_{x \to -\infty}\left(x + 9\right) = -\infty
More at x→-oo
The graph
Limit of the function 9+x