Mister Exam

Other calculators:


9-x

Limit of the function 9-x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (9 - x)
x->oo       
limx(9x)\lim_{x \to \infty}\left(9 - x\right)
Limit(9 - x, x, oo, dir='-')
Detail solution
Let's take the limit
limx(9x)\lim_{x \to \infty}\left(9 - x\right)
Let's divide numerator and denominator by x:
limx(9x)\lim_{x \to \infty}\left(9 - x\right) =
limx(1+9x1x)\lim_{x \to \infty}\left(\frac{-1 + \frac{9}{x}}{\frac{1}{x}}\right)
Do Replacement
u=1xu = \frac{1}{x}
then
limx(1+9x1x)=limu0+(9u1u)\lim_{x \to \infty}\left(\frac{-1 + \frac{9}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{9 u - 1}{u}\right)
=
1+090=\frac{-1 + 0 \cdot 9}{0} = -\infty

The final answer:
limx(9x)=\lim_{x \to \infty}\left(9 - x\right) = -\infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limx(9x)=\lim_{x \to \infty}\left(9 - x\right) = -\infty
limx0(9x)=9\lim_{x \to 0^-}\left(9 - x\right) = 9
More at x→0 from the left
limx0+(9x)=9\lim_{x \to 0^+}\left(9 - x\right) = 9
More at x→0 from the right
limx1(9x)=8\lim_{x \to 1^-}\left(9 - x\right) = 8
More at x→1 from the left
limx1+(9x)=8\lim_{x \to 1^+}\left(9 - x\right) = 8
More at x→1 from the right
limx(9x)=\lim_{x \to -\infty}\left(9 - x\right) = \infty
More at x→-oo
The graph
Limit of the function 9-x