Mister Exam

Other calculators:


-x^3

Limit of the function -x^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  3\
 lim \-x /
x->5+     
$$\lim_{x \to 5^+}\left(- x^{3}\right)$$
Limit(-x^3, x, 5)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     /  3\
 lim \-x /
x->5+     
$$\lim_{x \to 5^+}\left(- x^{3}\right)$$
-125
$$-125$$
= -125.0
     /  3\
 lim \-x /
x->5-     
$$\lim_{x \to 5^-}\left(- x^{3}\right)$$
-125
$$-125$$
= -125.0
= -125.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 5^-}\left(- x^{3}\right) = -125$$
More at x→5 from the left
$$\lim_{x \to 5^+}\left(- x^{3}\right) = -125$$
$$\lim_{x \to \infty}\left(- x^{3}\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x^{3}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{3}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x^{3}\right) = -1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{3}\right) = -1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x^{3}\right) = \infty$$
More at x→-oo
Rapid solution [src]
-125
$$-125$$
Numerical answer [src]
-125.0
-125.0
The graph
Limit of the function -x^3