Mister Exam

Other calculators:


(1+2*n)/(-1+3*n)

Limit of the function (1+2*n)/(-1+3*n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1 + 2*n \
 lim |--------|
n->oo\-1 + 3*n/
limn(2n+13n1)\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right)
Limit((1 + 2*n)/(-1 + 3*n), n, oo, dir='-')
Detail solution
Let's take the limit
limn(2n+13n1)\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right)
Let's divide numerator and denominator by n:
limn(2n+13n1)\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right) =
limn(2+1n31n)\lim_{n \to \infty}\left(\frac{2 + \frac{1}{n}}{3 - \frac{1}{n}}\right)
Do Replacement
u=1nu = \frac{1}{n}
then
limn(2+1n31n)=limu0+(u+23u)\lim_{n \to \infty}\left(\frac{2 + \frac{1}{n}}{3 - \frac{1}{n}}\right) = \lim_{u \to 0^+}\left(\frac{u + 2}{3 - u}\right)
=
230=23\frac{2}{3 - 0} = \frac{2}{3}

The final answer:
limn(2n+13n1)=23\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right) = \frac{2}{3}
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limn(2n+1)=\lim_{n \to \infty}\left(2 n + 1\right) = \infty
and limit for the denominator is
limn(3n1)=\lim_{n \to \infty}\left(3 n - 1\right) = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limn(2n+13n1)\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right)
=
limn(ddn(2n+1)ddn(3n1))\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(2 n + 1\right)}{\frac{d}{d n} \left(3 n - 1\right)}\right)
=
limn23\lim_{n \to \infty} \frac{2}{3}
=
limn23\lim_{n \to \infty} \frac{2}{3}
=
23\frac{2}{3}
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-2525
Rapid solution [src]
2/3
23\frac{2}{3}
Other limits n→0, -oo, +oo, 1
limn(2n+13n1)=23\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right) = \frac{2}{3}
limn0(2n+13n1)=1\lim_{n \to 0^-}\left(\frac{2 n + 1}{3 n - 1}\right) = -1
More at n→0 from the left
limn0+(2n+13n1)=1\lim_{n \to 0^+}\left(\frac{2 n + 1}{3 n - 1}\right) = -1
More at n→0 from the right
limn1(2n+13n1)=32\lim_{n \to 1^-}\left(\frac{2 n + 1}{3 n - 1}\right) = \frac{3}{2}
More at n→1 from the left
limn1+(2n+13n1)=32\lim_{n \to 1^+}\left(\frac{2 n + 1}{3 n - 1}\right) = \frac{3}{2}
More at n→1 from the right
limn(2n+13n1)=23\lim_{n \to -\infty}\left(\frac{2 n + 1}{3 n - 1}\right) = \frac{2}{3}
More at n→-oo
The graph
Limit of the function (1+2*n)/(-1+3*n)