Mister Exam

Other calculators:


(1+2*n)/(-1+3*n)

Limit of the function (1+2*n)/(-1+3*n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1 + 2*n \
 lim |--------|
n->oo\-1 + 3*n/
$$\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right)$$
Limit((1 + 2*n)/(-1 + 3*n), n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right)$$
Let's divide numerator and denominator by n:
$$\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right)$$ =
$$\lim_{n \to \infty}\left(\frac{2 + \frac{1}{n}}{3 - \frac{1}{n}}\right)$$
Do Replacement
$$u = \frac{1}{n}$$
then
$$\lim_{n \to \infty}\left(\frac{2 + \frac{1}{n}}{3 - \frac{1}{n}}\right) = \lim_{u \to 0^+}\left(\frac{u + 2}{3 - u}\right)$$
=
$$\frac{2}{3 - 0} = \frac{2}{3}$$

The final answer:
$$\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right) = \frac{2}{3}$$
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{n \to \infty}\left(2 n + 1\right) = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty}\left(3 n - 1\right) = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(2 n + 1\right)}{\frac{d}{d n} \left(3 n - 1\right)}\right)$$
=
$$\lim_{n \to \infty} \frac{2}{3}$$
=
$$\lim_{n \to \infty} \frac{2}{3}$$
=
$$\frac{2}{3}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
2/3
$$\frac{2}{3}$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{2 n + 1}{3 n - 1}\right) = \frac{2}{3}$$
$$\lim_{n \to 0^-}\left(\frac{2 n + 1}{3 n - 1}\right) = -1$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{2 n + 1}{3 n - 1}\right) = -1$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{2 n + 1}{3 n - 1}\right) = \frac{3}{2}$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{2 n + 1}{3 n - 1}\right) = \frac{3}{2}$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{2 n + 1}{3 n - 1}\right) = \frac{2}{3}$$
More at n→-oo
The graph
Limit of the function (1+2*n)/(-1+3*n)