Mister Exam

Other calculators:


(-x+atan(x))/x^3

Limit of the function (-x+atan(x))/x^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-x + atan(x)\
 lim |------------|
x->0+|      3     |
     \     x      /
$$\lim_{x \to 0^+}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right)$$
Limit((-x + atan(x))/(x^3), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(- x + \operatorname{atan}{\left(x \right)}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x^{3} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- x + \operatorname{atan}{\left(x \right)}\right)}{\frac{d}{d x} x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{-1 + \frac{1}{x^{2} + 1}}{3 x^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(-1 + \frac{1}{x^{2} + 1}\right)}{\frac{d}{d x} 3 x^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{1}{3 \left(x^{2} + 1\right)^{2}}\right)$$
=
$$\lim_{x \to 0^+} - \frac{1}{3}$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- 2 x\right)}{\frac{d}{d x} 6 x}\right)$$
=
$$\lim_{x \to 0^+} - \frac{1}{3}$$
=
$$\lim_{x \to 0^+} - \frac{1}{3}$$
=
$$- \frac{1}{3}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)
The graph
Rapid solution [src]
-1/3
$$- \frac{1}{3}$$
One‐sided limits [src]
     /-x + atan(x)\
 lim |------------|
x->0+|      3     |
     \     x      /
$$\lim_{x \to 0^+}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right)$$
-1/3
$$- \frac{1}{3}$$
= -0.333333333333333
     /-x + atan(x)\
 lim |------------|
x->0-|      3     |
     \     x      /
$$\lim_{x \to 0^-}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right)$$
-1/3
$$- \frac{1}{3}$$
= -0.333333333333333
= -0.333333333333333
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right) = - \frac{1}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right) = - \frac{1}{3}$$
$$\lim_{x \to \infty}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right) = -1 + \frac{\pi}{4}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right) = -1 + \frac{\pi}{4}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{- x + \operatorname{atan}{\left(x \right)}}{x^{3}}\right) = 0$$
More at x→-oo
Numerical answer [src]
-0.333333333333333
-0.333333333333333
The graph
Limit of the function (-x+atan(x))/x^3