Mister Exam

Limit of the function -x*log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (-x*log(x))
x->oo           
limx(xlog(x))\lim_{x \to \infty}\left(- x \log{\left(x \right)}\right)
Limit((-x)*log(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2525
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limx(xlog(x))=\lim_{x \to \infty}\left(- x \log{\left(x \right)}\right) = -\infty
limx0(xlog(x))=0\lim_{x \to 0^-}\left(- x \log{\left(x \right)}\right) = 0
More at x→0 from the left
limx0+(xlog(x))=0\lim_{x \to 0^+}\left(- x \log{\left(x \right)}\right) = 0
More at x→0 from the right
limx1(xlog(x))=0\lim_{x \to 1^-}\left(- x \log{\left(x \right)}\right) = 0
More at x→1 from the left
limx1+(xlog(x))=0\lim_{x \to 1^+}\left(- x \log{\left(x \right)}\right) = 0
More at x→1 from the right
limx(xlog(x))=\lim_{x \to -\infty}\left(- x \log{\left(x \right)}\right) = \infty
More at x→-oo
The graph
Limit of the function -x*log(x)