$$\lim_{x \to \infty}\left(- x \log{\left(x \right)}\right) = -\infty$$ $$\lim_{x \to 0^-}\left(- x \log{\left(x \right)}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(- x \log{\left(x \right)}\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(- x \log{\left(x \right)}\right) = 0$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(- x \log{\left(x \right)}\right) = 0$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(- x \log{\left(x \right)}\right) = \infty$$ More at x→-oo