Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((5+6*x)/(-10+x))^(5*x)
Limit of (-2+x)^(-2)
Limit of (sin(x)+tan(x))/(2*x)
Limit of n*(2+n)/(1+n)^2
Graphing y =
:
-x*log(x)
Identical expressions
-x*log(x)
minus x multiply by logarithm of (x)
-xlog(x)
-xlogx
Similar expressions
3^(-x)*log(x)
2*(1-x)*log(x)
(1-x)*log(x)/log(2)
x*log(x)
-1+x^2-e+e^(-x)*log(x)
Limit of the function
/
-x*log(x)
Limit of the function -x*log(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-x*log(x)) x->oo
lim
x
→
∞
(
−
x
log
(
x
)
)
\lim_{x \to \infty}\left(- x \log{\left(x \right)}\right)
x
→
∞
lim
(
−
x
lo
g
(
x
)
)
Limit((-x)*log(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-25
25
Plot the graph
Rapid solution
[src]
-oo
−
∞
-\infty
−
∞
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
−
x
log
(
x
)
)
=
−
∞
\lim_{x \to \infty}\left(- x \log{\left(x \right)}\right) = -\infty
x
→
∞
lim
(
−
x
lo
g
(
x
)
)
=
−
∞
lim
x
→
0
−
(
−
x
log
(
x
)
)
=
0
\lim_{x \to 0^-}\left(- x \log{\left(x \right)}\right) = 0
x
→
0
−
lim
(
−
x
lo
g
(
x
)
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
−
x
log
(
x
)
)
=
0
\lim_{x \to 0^+}\left(- x \log{\left(x \right)}\right) = 0
x
→
0
+
lim
(
−
x
lo
g
(
x
)
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
−
x
log
(
x
)
)
=
0
\lim_{x \to 1^-}\left(- x \log{\left(x \right)}\right) = 0
x
→
1
−
lim
(
−
x
lo
g
(
x
)
)
=
0
More at x→1 from the left
lim
x
→
1
+
(
−
x
log
(
x
)
)
=
0
\lim_{x \to 1^+}\left(- x \log{\left(x \right)}\right) = 0
x
→
1
+
lim
(
−
x
lo
g
(
x
)
)
=
0
More at x→1 from the right
lim
x
→
−
∞
(
−
x
log
(
x
)
)
=
∞
\lim_{x \to -\infty}\left(- x \log{\left(x \right)}\right) = \infty
x
→
−
∞
lim
(
−
x
lo
g
(
x
)
)
=
∞
More at x→-oo
The graph