Mister Exam

Other calculators:


3^(-x)*log(x)

Limit of the function 3^(-x)*log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -x       \
 lim \3  *log(x)/
x->oo            
limx(3xlog(x))\lim_{x \to \infty}\left(3^{- x} \log{\left(x \right)}\right)
Limit(3^(-x)*log(x), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limxlog(x)=\lim_{x \to \infty} \log{\left(x \right)} = \infty
and limit for the denominator is
limx3x=\lim_{x \to \infty} 3^{x} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(3xlog(x))\lim_{x \to \infty}\left(3^{- x} \log{\left(x \right)}\right)
=
limx(ddxlog(x)ddx3x)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(x \right)}}{\frac{d}{d x} 3^{x}}\right)
=
limx(3xxlog(3))\lim_{x \to \infty}\left(\frac{3^{- x}}{x \log{\left(3 \right)}}\right)
=
limx(3xxlog(3))\lim_{x \to \infty}\left(\frac{3^{- x}}{x \log{\left(3 \right)}}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-10102.5-2.5
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(3xlog(x))=0\lim_{x \to \infty}\left(3^{- x} \log{\left(x \right)}\right) = 0
limx0(3xlog(x))=\lim_{x \to 0^-}\left(3^{- x} \log{\left(x \right)}\right) = -\infty
More at x→0 from the left
limx0+(3xlog(x))=\lim_{x \to 0^+}\left(3^{- x} \log{\left(x \right)}\right) = -\infty
More at x→0 from the right
limx1(3xlog(x))=0\lim_{x \to 1^-}\left(3^{- x} \log{\left(x \right)}\right) = 0
More at x→1 from the left
limx1+(3xlog(x))=0\lim_{x \to 1^+}\left(3^{- x} \log{\left(x \right)}\right) = 0
More at x→1 from the right
limx(3xlog(x))=\lim_{x \to -\infty}\left(3^{- x} \log{\left(x \right)}\right) = \infty
More at x→-oo
The graph
Limit of the function 3^(-x)*log(x)