Mister Exam

Other calculators:


-2*x

Limit of the function -2*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (-2*x)
x->0+      
limx0+(2x)\lim_{x \to 0^+}\left(- 2 x\right)
Limit(-2*x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-5050
Rapid solution [src]
0
00
One‐sided limits [src]
 lim (-2*x)
x->0+      
limx0+(2x)\lim_{x \to 0^+}\left(- 2 x\right)
0
00
= -1.71127851547238e-32
 lim (-2*x)
x->0-      
limx0(2x)\lim_{x \to 0^-}\left(- 2 x\right)
0
00
= 1.71127851547238e-32
= 1.71127851547238e-32
Other limits x→0, -oo, +oo, 1
limx0(2x)=0\lim_{x \to 0^-}\left(- 2 x\right) = 0
More at x→0 from the left
limx0+(2x)=0\lim_{x \to 0^+}\left(- 2 x\right) = 0
limx(2x)=\lim_{x \to \infty}\left(- 2 x\right) = -\infty
More at x→oo
limx1(2x)=2\lim_{x \to 1^-}\left(- 2 x\right) = -2
More at x→1 from the left
limx1+(2x)=2\lim_{x \to 1^+}\left(- 2 x\right) = -2
More at x→1 from the right
limx(2x)=\lim_{x \to -\infty}\left(- 2 x\right) = \infty
More at x→-oo
Numerical answer [src]
-1.71127851547238e-32
-1.71127851547238e-32
The graph
Limit of the function -2*x