Mister Exam

Other calculators:


(-1+x^2)/(1-x)

Limit of the function (-1+x^2)/(1-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      2\
     |-1 + x |
 lim |-------|
x->1+\ 1 - x /
limx1+(x211x)\lim_{x \to 1^+}\left(\frac{x^{2} - 1}{1 - x}\right)
Limit((-1 + x^2)/(1 - x), x, 1)
Detail solution
Let's take the limit
limx1+(x211x)\lim_{x \to 1^+}\left(\frac{x^{2} - 1}{1 - x}\right)
transform
limx1+(x211x)\lim_{x \to 1^+}\left(\frac{x^{2} - 1}{1 - x}\right)
=
limx1+((x1)(x+1)1x)\lim_{x \to 1^+}\left(\frac{\left(x - 1\right) \left(x + 1\right)}{1 - x}\right)
=
limx1+(x1)=\lim_{x \to 1^+}\left(- x - 1\right) =
11=-1 - 1 =
= -2

The final answer:
limx1+(x211x)=2\lim_{x \to 1^+}\left(\frac{x^{2} - 1}{1 - x}\right) = -2
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx1+(x21)=0\lim_{x \to 1^+}\left(x^{2} - 1\right) = 0
and limit for the denominator is
limx1+(1x)=0\lim_{x \to 1^+}\left(1 - x\right) = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx1+(x211x)\lim_{x \to 1^+}\left(\frac{x^{2} - 1}{1 - x}\right)
=
limx1+(ddx(x21)ddx(1x))\lim_{x \to 1^+}\left(\frac{\frac{d}{d x} \left(x^{2} - 1\right)}{\frac{d}{d x} \left(1 - x\right)}\right)
=
limx1+(2x)\lim_{x \to 1^+}\left(- 2 x\right)
=
limx1+2\lim_{x \to 1^+} -2
=
limx1+2\lim_{x \to 1^+} -2
=
2-2
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
-2.0-1.5-1.0-0.52.00.00.51.01.55-5
Rapid solution [src]
-2
2-2
One‐sided limits [src]
     /      2\
     |-1 + x |
 lim |-------|
x->1+\ 1 - x /
limx1+(x211x)\lim_{x \to 1^+}\left(\frac{x^{2} - 1}{1 - x}\right)
-2
2-2
= -2.0
     /      2\
     |-1 + x |
 lim |-------|
x->1-\ 1 - x /
limx1(x211x)\lim_{x \to 1^-}\left(\frac{x^{2} - 1}{1 - x}\right)
-2
2-2
= -2.0
= -2.0
Other limits x→0, -oo, +oo, 1
limx1(x211x)=2\lim_{x \to 1^-}\left(\frac{x^{2} - 1}{1 - x}\right) = -2
More at x→1 from the left
limx1+(x211x)=2\lim_{x \to 1^+}\left(\frac{x^{2} - 1}{1 - x}\right) = -2
limx(x211x)=\lim_{x \to \infty}\left(\frac{x^{2} - 1}{1 - x}\right) = -\infty
More at x→oo
limx0(x211x)=1\lim_{x \to 0^-}\left(\frac{x^{2} - 1}{1 - x}\right) = -1
More at x→0 from the left
limx0+(x211x)=1\lim_{x \to 0^+}\left(\frac{x^{2} - 1}{1 - x}\right) = -1
More at x→0 from the right
limx(x211x)=\lim_{x \to -\infty}\left(\frac{x^{2} - 1}{1 - x}\right) = \infty
More at x→-oo
Numerical answer [src]
-2.0
-2.0
The graph
Limit of the function (-1+x^2)/(1-x)