Mister Exam

Other calculators:


(-1+x)/(3-2*x)

Limit of the function (-1+x)/(3-2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -1 + x\
 lim |-------|
x->oo\3 - 2*x/
$$\lim_{x \to \infty}\left(\frac{x - 1}{3 - 2 x}\right)$$
Limit((-1 + x)/(3 - 2*x), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{x - 1}{3 - 2 x}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(\frac{x - 1}{3 - 2 x}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 - \frac{1}{x}}{-2 + \frac{3}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 - \frac{1}{x}}{-2 + \frac{3}{x}}\right) = \lim_{u \to 0^+}\left(\frac{1 - u}{3 u - 2}\right)$$
=
$$\frac{1 - 0}{-2 + 0 \cdot 3} = - \frac{1}{2}$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{x - 1}{3 - 2 x}\right) = - \frac{1}{2}$$
Lopital's rule
We have indeterminateness of type
oo/-oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty}\left(x - 1\right) = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty}\left(3 - 2 x\right) = -\infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{x - 1}{3 - 2 x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(x - 1\right)}{\frac{d}{d x} \left(3 - 2 x\right)}\right)$$
=
$$\lim_{x \to \infty} - \frac{1}{2}$$
=
$$\lim_{x \to \infty} - \frac{1}{2}$$
=
$$- \frac{1}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
-1/2
$$- \frac{1}{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x - 1}{3 - 2 x}\right) = - \frac{1}{2}$$
$$\lim_{x \to 0^-}\left(\frac{x - 1}{3 - 2 x}\right) = - \frac{1}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x - 1}{3 - 2 x}\right) = - \frac{1}{3}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x - 1}{3 - 2 x}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x - 1}{3 - 2 x}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x - 1}{3 - 2 x}\right) = - \frac{1}{2}$$
More at x→-oo
The graph
Limit of the function (-1+x)/(3-2*x)