Mister Exam

Other calculators:


-sec(x)+tan(x)

Limit of the function -sec(x)+tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (-sec(x) + tan(x))
   pi                   
x->--+                  
   2                    
$$\lim_{x \to \frac{\pi}{2}^+}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right)$$
Limit(-sec(x) + tan(x), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim  (-sec(x) + tan(x))
   pi                   
x->--+                  
   2                    
$$\lim_{x \to \frac{\pi}{2}^+}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right)$$
0
$$0$$
= -3.06161699786838e-17
 lim  (-sec(x) + tan(x))
   pi                   
x->---                  
   2                    
$$\lim_{x \to \frac{\pi}{2}^-}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right)$$
0
$$0$$
= -3.06161699786839e-17
= -3.06161699786839e-17
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right) = 0$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right) = -1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right) = \frac{-1 + \cos{\left(1 \right)} \tan{\left(1 \right)}}{\cos{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right) = \frac{-1 + \cos{\left(1 \right)} \tan{\left(1 \right)}}{\cos{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\tan{\left(x \right)} - \sec{\left(x \right)}\right)$$
More at x→-oo
Numerical answer [src]
-3.06161699786838e-17
-3.06161699786838e-17
The graph
Limit of the function -sec(x)+tan(x)