Mister Exam

Other calculators:


-1/y

Limit of the function -1/y

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-1 \
 lim |---|
y->oo\ y /
$$\lim_{y \to \infty}\left(- \frac{1}{y}\right)$$
Limit(-1/y, y, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{y \to \infty}\left(- \frac{1}{y}\right)$$
Let's divide numerator and denominator by y:
$$\lim_{y \to \infty}\left(- \frac{1}{y}\right)$$ =
$$\lim_{y \to \infty}\left(\frac{\left(-1\right) \frac{1}{y}}{1}\right)$$
Do Replacement
$$u = \frac{1}{y}$$
then
$$\lim_{y \to \infty}\left(\frac{\left(-1\right) \frac{1}{y}}{1}\right) = \lim_{u \to 0^+}\left(- u\right)$$
=
$$- 0 = 0$$

The final answer:
$$\lim_{y \to \infty}\left(- \frac{1}{y}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits y→0, -oo, +oo, 1
$$\lim_{y \to \infty}\left(- \frac{1}{y}\right) = 0$$
$$\lim_{y \to 0^-}\left(- \frac{1}{y}\right) = \infty$$
More at y→0 from the left
$$\lim_{y \to 0^+}\left(- \frac{1}{y}\right) = -\infty$$
More at y→0 from the right
$$\lim_{y \to 1^-}\left(- \frac{1}{y}\right) = -1$$
More at y→1 from the left
$$\lim_{y \to 1^+}\left(- \frac{1}{y}\right) = -1$$
More at y→1 from the right
$$\lim_{y \to -\infty}\left(- \frac{1}{y}\right) = 0$$
More at y→-oo
The graph
Limit of the function -1/y