Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((2+x)/(4+x))^cos(x)
Limit of -5-2*x^2+8*x
Limit of (-9+x^2)/(-27+x^3)
Limit of 1+7*x+11*x^2/2
Derivative of
:
-1/3
Identical expressions
- one / three
minus 1 divide by 3
minus one divide by three
-1 divide by 3
Similar expressions
-1/(3+x)+6/(9-x^2)
1/3
Limit of the function
/
-1/3
Limit of the function -1/3
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-1/3) x->2+
$$\lim_{x \to 2^+} - \frac{1}{3}$$
Limit(-1/3, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-1/3
$$- \frac{1}{3}$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} - \frac{1}{3} = - \frac{1}{3}$$
More at x→2 from the left
$$\lim_{x \to 2^+} - \frac{1}{3} = - \frac{1}{3}$$
$$\lim_{x \to \infty} - \frac{1}{3} = - \frac{1}{3}$$
More at x→oo
$$\lim_{x \to 0^-} - \frac{1}{3} = - \frac{1}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+} - \frac{1}{3} = - \frac{1}{3}$$
More at x→0 from the right
$$\lim_{x \to 1^-} - \frac{1}{3} = - \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} - \frac{1}{3} = - \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} - \frac{1}{3} = - \frac{1}{3}$$
More at x→-oo
One‐sided limits
[src]
lim (-1/3) x->2+
$$\lim_{x \to 2^+} - \frac{1}{3}$$
-1/3
$$- \frac{1}{3}$$
= -0.333333333333333
lim (-1/3) x->2-
$$\lim_{x \to 2^-} - \frac{1}{3}$$
-1/3
$$- \frac{1}{3}$$
= -0.333333333333333
= -0.333333333333333
Numerical answer
[src]
-0.333333333333333
-0.333333333333333
The graph