Mister Exam

Other calculators:


-1/3

Limit of the function -1/3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (-1/3)
x->2+      
limx2+13\lim_{x \to 2^+} - \frac{1}{3}
Limit(-1/3, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-1.0-0.8-0.6-0.4-0.21.00.00.20.40.60.8-0.34-0.32
Rapid solution [src]
-1/3
13- \frac{1}{3}
Other limits x→0, -oo, +oo, 1
limx213=13\lim_{x \to 2^-} - \frac{1}{3} = - \frac{1}{3}
More at x→2 from the left
limx2+13=13\lim_{x \to 2^+} - \frac{1}{3} = - \frac{1}{3}
limx13=13\lim_{x \to \infty} - \frac{1}{3} = - \frac{1}{3}
More at x→oo
limx013=13\lim_{x \to 0^-} - \frac{1}{3} = - \frac{1}{3}
More at x→0 from the left
limx0+13=13\lim_{x \to 0^+} - \frac{1}{3} = - \frac{1}{3}
More at x→0 from the right
limx113=13\lim_{x \to 1^-} - \frac{1}{3} = - \frac{1}{3}
More at x→1 from the left
limx1+13=13\lim_{x \to 1^+} - \frac{1}{3} = - \frac{1}{3}
More at x→1 from the right
limx13=13\lim_{x \to -\infty} - \frac{1}{3} = - \frac{1}{3}
More at x→-oo
One‐sided limits [src]
 lim (-1/3)
x->2+      
limx2+13\lim_{x \to 2^+} - \frac{1}{3}
-1/3
13- \frac{1}{3}
= -0.333333333333333
 lim (-1/3)
x->2-      
limx213\lim_{x \to 2^-} - \frac{1}{3}
-1/3
13- \frac{1}{3}
= -0.333333333333333
= -0.333333333333333
Numerical answer [src]
-0.333333333333333
-0.333333333333333
The graph
Limit of the function -1/3