Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+x^2-4*x)/(1+2*x)
Limit of (-2+x)/(-8+x^3)
Limit of (3+x^2+2*x)/(4+2*x^2+3*x)
Limit of (-x+tan(x))/(x+2*sin(x))
Integral of d{x}
:
-1/5
Identical expressions
- one / five
minus 1 divide by 5
minus one divide by five
-1 divide by 5
Similar expressions
1/5
1/(-1+e^sin(5*x))-1/(5*x)
(1-1/(5*n))^(2*n)
Limit of the function
/
-1/5
Limit of the function -1/5
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-1/5) x->oo
lim
x
→
∞
−
1
5
\lim_{x \to \infty} - \frac{1}{5}
x
→
∞
lim
−
5
1
Limit(-1/5, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-0.010
-0.008
-0.006
-0.004
-0.002
0.010
0.000
0.002
0.004
0.006
0.008
0.00
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
−
1
5
=
−
1
5
\lim_{x \to \infty} - \frac{1}{5} = - \frac{1}{5}
x
→
∞
lim
−
5
1
=
−
5
1
lim
x
→
0
−
−
1
5
=
−
1
5
\lim_{x \to 0^-} - \frac{1}{5} = - \frac{1}{5}
x
→
0
−
lim
−
5
1
=
−
5
1
More at x→0 from the left
lim
x
→
0
+
−
1
5
=
−
1
5
\lim_{x \to 0^+} - \frac{1}{5} = - \frac{1}{5}
x
→
0
+
lim
−
5
1
=
−
5
1
More at x→0 from the right
lim
x
→
1
−
−
1
5
=
−
1
5
\lim_{x \to 1^-} - \frac{1}{5} = - \frac{1}{5}
x
→
1
−
lim
−
5
1
=
−
5
1
More at x→1 from the left
lim
x
→
1
+
−
1
5
=
−
1
5
\lim_{x \to 1^+} - \frac{1}{5} = - \frac{1}{5}
x
→
1
+
lim
−
5
1
=
−
5
1
More at x→1 from the right
lim
x
→
−
∞
−
1
5
=
−
1
5
\lim_{x \to -\infty} - \frac{1}{5} = - \frac{1}{5}
x
→
−
∞
lim
−
5
1
=
−
5
1
More at x→-oo
Rapid solution
[src]
-1/5
−
1
5
- \frac{1}{5}
−
5
1
Expand and simplify
The graph