Mister Exam

Other calculators:


-4+2*x

Limit of the function -4+2*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (-4 + 2*x)
x->3+          
$$\lim_{x \to 3^+}\left(2 x - 4\right)$$
Limit(-4 + 2*x, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
2
$$2$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-}\left(2 x - 4\right) = 2$$
More at x→3 from the left
$$\lim_{x \to 3^+}\left(2 x - 4\right) = 2$$
$$\lim_{x \to \infty}\left(2 x - 4\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(2 x - 4\right) = -4$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(2 x - 4\right) = -4$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(2 x - 4\right) = -2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(2 x - 4\right) = -2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(2 x - 4\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
 lim (-4 + 2*x)
x->3+          
$$\lim_{x \to 3^+}\left(2 x - 4\right)$$
2
$$2$$
= 2.0
 lim (-4 + 2*x)
x->3-          
$$\lim_{x \to 3^-}\left(2 x - 4\right)$$
2
$$2$$
= 2.0
= 2.0
Numerical answer [src]
2.0
2.0
The graph
Limit of the function -4+2*x