Mister Exam

Other calculators:


(1-cos(x)^2)/x

Limit of the function (1-cos(x)^2)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       2   \
     |1 - cos (x)|
 lim |-----------|
x->0+\     x     /
$$\lim_{x \to 0^+}\left(\frac{1 - \cos^{2}{\left(x \right)}}{x}\right)$$
Limit((1 - cos(x)^2)/x, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(1 - \cos^{2}{\left(x \right)}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{1 - \cos^{2}{\left(x \right)}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(1 - \cos^{2}{\left(x \right)}\right)}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to 0^+}\left(2 \sin{\left(x \right)} \cos{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(2 \sin{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(2 \sin{\left(x \right)}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /       2   \
     |1 - cos (x)|
 lim |-----------|
x->0+\     x     /
$$\lim_{x \to 0^+}\left(\frac{1 - \cos^{2}{\left(x \right)}}{x}\right)$$
0
$$0$$
= -7.34778436425346e-33
     /       2   \
     |1 - cos (x)|
 lim |-----------|
x->0-\     x     /
$$\lim_{x \to 0^-}\left(\frac{1 - \cos^{2}{\left(x \right)}}{x}\right)$$
0
$$0$$
= 7.34778436425346e-33
= 7.34778436425346e-33
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{1 - \cos^{2}{\left(x \right)}}{x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{1 - \cos^{2}{\left(x \right)}}{x}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{1 - \cos^{2}{\left(x \right)}}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{1 - \cos^{2}{\left(x \right)}}{x}\right) = 1 - \cos^{2}{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{1 - \cos^{2}{\left(x \right)}}{x}\right) = 1 - \cos^{2}{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{1 - \cos^{2}{\left(x \right)}}{x}\right) = 0$$
More at x→-oo
Numerical answer [src]
-7.34778436425346e-33
-7.34778436425346e-33
The graph
Limit of the function (1-cos(x)^2)/x