$$\lim_{x \to \infty} \left(1 + \frac{7}{x}\right)^{3 x} = e^{21}$$ $$\lim_{x \to 0^-} \left(1 + \frac{7}{x}\right)^{3 x} = 1$$ More at x→0 from the left $$\lim_{x \to 0^+} \left(1 + \frac{7}{x}\right)^{3 x} = 1$$ More at x→0 from the right $$\lim_{x \to 1^-} \left(1 + \frac{7}{x}\right)^{3 x} = 512$$ More at x→1 from the left $$\lim_{x \to 1^+} \left(1 + \frac{7}{x}\right)^{3 x} = 512$$ More at x→1 from the right $$\lim_{x \to -\infty} \left(1 + \frac{7}{x}\right)^{3 x} = e^{21}$$ More at x→-oo