Mister Exam

Other calculators:


(1+7/x)^(3*x)

Limit of the function (1+7/x)^(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            3*x
     /    7\   
 lim |1 + -|   
x->oo\    x/   
$$\lim_{x \to \infty} \left(1 + \frac{7}{x}\right)^{3 x}$$
Limit((1 + 7/x)^(3*x), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \left(1 + \frac{7}{x}\right)^{3 x}$$
transform
do replacement
$$u = \frac{x}{7}$$
then
$$\lim_{x \to \infty} \left(1 + \frac{7}{x}\right)^{3 x}$$ =
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{21 u}$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{21 u}$$
=
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{21}$$
The limit
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{21} = e^{21}$$

The final answer:
$$\lim_{x \to \infty} \left(1 + \frac{7}{x}\right)^{3 x} = e^{21}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 21
e  
$$e^{21}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(1 + \frac{7}{x}\right)^{3 x} = e^{21}$$
$$\lim_{x \to 0^-} \left(1 + \frac{7}{x}\right)^{3 x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(1 + \frac{7}{x}\right)^{3 x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(1 + \frac{7}{x}\right)^{3 x} = 512$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(1 + \frac{7}{x}\right)^{3 x} = 512$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(1 + \frac{7}{x}\right)^{3 x} = e^{21}$$
More at x→-oo
The graph
Limit of the function (1+7/x)^(3*x)