Mister Exam

Other calculators:


-5*x^2

Limit of the function -5*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    2\
 lim \-5*x /
x->oo       
limx(5x2)\lim_{x \to \infty}\left(- 5 x^{2}\right)
Limit(-5*x^2, x, oo, dir='-')
Detail solution
Let's take the limit
limx(5x2)\lim_{x \to \infty}\left(- 5 x^{2}\right)
Let's divide numerator and denominator by x^2:
limx(5x2)\lim_{x \to \infty}\left(- 5 x^{2}\right) =
limx1(1)151x2\lim_{x \to \infty} \frac{1}{\left(-1\right) \frac{1}{5} \frac{1}{x^{2}}}
Do Replacement
u=1xu = \frac{1}{x}
then
limx1(1)151x2=limu0+(5u2)\lim_{x \to \infty} \frac{1}{\left(-1\right) \frac{1}{5} \frac{1}{x^{2}}} = \lim_{u \to 0^+}\left(- \frac{5}{u^{2}}\right)
=
50=- \frac{5}{0} = -\infty

The final answer:
limx(5x2)=\lim_{x \to \infty}\left(- 5 x^{2}\right) = -\infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-1000500
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limx(5x2)=\lim_{x \to \infty}\left(- 5 x^{2}\right) = -\infty
limx0(5x2)=0\lim_{x \to 0^-}\left(- 5 x^{2}\right) = 0
More at x→0 from the left
limx0+(5x2)=0\lim_{x \to 0^+}\left(- 5 x^{2}\right) = 0
More at x→0 from the right
limx1(5x2)=5\lim_{x \to 1^-}\left(- 5 x^{2}\right) = -5
More at x→1 from the left
limx1+(5x2)=5\lim_{x \to 1^+}\left(- 5 x^{2}\right) = -5
More at x→1 from the right
limx(5x2)=\lim_{x \to -\infty}\left(- 5 x^{2}\right) = -\infty
More at x→-oo
The graph
Limit of the function -5*x^2