Mister Exam

Other calculators:


-5*x

Limit of the function -5*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (-5*x)
x->-3+      
$$\lim_{x \to -3^+}\left(- 5 x\right)$$
Limit(-5*x, x, -3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
15
$$15$$
One‐sided limits [src]
 lim  (-5*x)
x->-3+      
$$\lim_{x \to -3^+}\left(- 5 x\right)$$
15
$$15$$
= 15.0
 lim  (-5*x)
x->-3-      
$$\lim_{x \to -3^-}\left(- 5 x\right)$$
15
$$15$$
= 15.0
= 15.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -3^-}\left(- 5 x\right) = 15$$
More at x→-3 from the left
$$\lim_{x \to -3^+}\left(- 5 x\right) = 15$$
$$\lim_{x \to \infty}\left(- 5 x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- 5 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- 5 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- 5 x\right) = -5$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- 5 x\right) = -5$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- 5 x\right) = \infty$$
More at x→-oo
Numerical answer [src]
15.0
15.0
The graph
Limit of the function -5*x