Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((5+6*x)/(-10+x))^(5*x)
Limit of (-2+x)^(-2)
Limit of (sin(x)+tan(x))/(2*x)
Limit of log(1+x)/log(2+x)
Derivative of
:
-5*x
-5*x
Identical expressions
- five *x
minus 5 multiply by x
minus five multiply by x
-5x
Similar expressions
5*x
Limit of the function
/
-5*x
Limit of the function -5*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-5*x) x->-3+
lim
x
→
−
3
+
(
−
5
x
)
\lim_{x \to -3^+}\left(- 5 x\right)
x
→
−
3
+
lim
(
−
5
x
)
Limit(-5*x, x, -3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
6
0
1
2
3
4
5
-6
-5
-4
-3
-2
-1
-50
50
Plot the graph
Rapid solution
[src]
15
15
15
15
Expand and simplify
One‐sided limits
[src]
lim (-5*x) x->-3+
lim
x
→
−
3
+
(
−
5
x
)
\lim_{x \to -3^+}\left(- 5 x\right)
x
→
−
3
+
lim
(
−
5
x
)
15
15
15
15
= 15.0
lim (-5*x) x->-3-
lim
x
→
−
3
−
(
−
5
x
)
\lim_{x \to -3^-}\left(- 5 x\right)
x
→
−
3
−
lim
(
−
5
x
)
15
15
15
15
= 15.0
= 15.0
Other limits x→0, -oo, +oo, 1
lim
x
→
−
3
−
(
−
5
x
)
=
15
\lim_{x \to -3^-}\left(- 5 x\right) = 15
x
→
−
3
−
lim
(
−
5
x
)
=
15
More at x→-3 from the left
lim
x
→
−
3
+
(
−
5
x
)
=
15
\lim_{x \to -3^+}\left(- 5 x\right) = 15
x
→
−
3
+
lim
(
−
5
x
)
=
15
lim
x
→
∞
(
−
5
x
)
=
−
∞
\lim_{x \to \infty}\left(- 5 x\right) = -\infty
x
→
∞
lim
(
−
5
x
)
=
−
∞
More at x→oo
lim
x
→
0
−
(
−
5
x
)
=
0
\lim_{x \to 0^-}\left(- 5 x\right) = 0
x
→
0
−
lim
(
−
5
x
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
−
5
x
)
=
0
\lim_{x \to 0^+}\left(- 5 x\right) = 0
x
→
0
+
lim
(
−
5
x
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
−
5
x
)
=
−
5
\lim_{x \to 1^-}\left(- 5 x\right) = -5
x
→
1
−
lim
(
−
5
x
)
=
−
5
More at x→1 from the left
lim
x
→
1
+
(
−
5
x
)
=
−
5
\lim_{x \to 1^+}\left(- 5 x\right) = -5
x
→
1
+
lim
(
−
5
x
)
=
−
5
More at x→1 from the right
lim
x
→
−
∞
(
−
5
x
)
=
∞
\lim_{x \to -\infty}\left(- 5 x\right) = \infty
x
→
−
∞
lim
(
−
5
x
)
=
∞
More at x→-oo
Numerical answer
[src]
15.0
15.0
The graph