Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of x^(4/x)
Limit of (-6+x^2-x)/(-4+x^2)
Limit of (-6+x^2-x)/(-21+x+2*x^2)
Limit of e^(3-x)*(-2+x)
Derivative of
:
-5*x
-5*x
Identical expressions
- five *x
minus 5 multiply by x
minus five multiply by x
-5x
Similar expressions
5*x
Limit of the function
/
-5*x
Limit of the function -5*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-5*x) x->-3+
$$\lim_{x \to -3^+}\left(- 5 x\right)$$
Limit(-5*x, x, -3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
15
$$15$$
Expand and simplify
One‐sided limits
[src]
lim (-5*x) x->-3+
$$\lim_{x \to -3^+}\left(- 5 x\right)$$
15
$$15$$
= 15.0
lim (-5*x) x->-3-
$$\lim_{x \to -3^-}\left(- 5 x\right)$$
15
$$15$$
= 15.0
= 15.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -3^-}\left(- 5 x\right) = 15$$
More at x→-3 from the left
$$\lim_{x \to -3^+}\left(- 5 x\right) = 15$$
$$\lim_{x \to \infty}\left(- 5 x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- 5 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- 5 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- 5 x\right) = -5$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- 5 x\right) = -5$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- 5 x\right) = \infty$$
More at x→-oo
Numerical answer
[src]
15.0
15.0
The graph