Mister Exam

Other calculators:


-5*x

Limit of the function -5*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (-5*x)
x->-3+      
limx3+(5x)\lim_{x \to -3^+}\left(- 5 x\right)
Limit(-5*x, x, -3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
6012345-6-5-4-3-2-1-5050
Rapid solution [src]
15
1515
One‐sided limits [src]
 lim  (-5*x)
x->-3+      
limx3+(5x)\lim_{x \to -3^+}\left(- 5 x\right)
15
1515
= 15.0
 lim  (-5*x)
x->-3-      
limx3(5x)\lim_{x \to -3^-}\left(- 5 x\right)
15
1515
= 15.0
= 15.0
Other limits x→0, -oo, +oo, 1
limx3(5x)=15\lim_{x \to -3^-}\left(- 5 x\right) = 15
More at x→-3 from the left
limx3+(5x)=15\lim_{x \to -3^+}\left(- 5 x\right) = 15
limx(5x)=\lim_{x \to \infty}\left(- 5 x\right) = -\infty
More at x→oo
limx0(5x)=0\lim_{x \to 0^-}\left(- 5 x\right) = 0
More at x→0 from the left
limx0+(5x)=0\lim_{x \to 0^+}\left(- 5 x\right) = 0
More at x→0 from the right
limx1(5x)=5\lim_{x \to 1^-}\left(- 5 x\right) = -5
More at x→1 from the left
limx1+(5x)=5\lim_{x \to 1^+}\left(- 5 x\right) = -5
More at x→1 from the right
limx(5x)=\lim_{x \to -\infty}\left(- 5 x\right) = \infty
More at x→-oo
Numerical answer [src]
15.0
15.0
The graph
Limit of the function -5*x