Mister Exam

Other calculators:


(-exp(-x)+exp(x))/x

Limit of the function (-exp(-x)+exp(x))/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   -x    x\
     |- e   + e |
 lim |----------|
x->0+\    x     /
$$\lim_{x \to 0^+}\left(\frac{e^{x} - e^{- x}}{x}\right)$$
Limit((-exp(-x) + exp(x))/x, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(e^{2 x} - 1\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(x e^{x}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{e^{x} - e^{- x}}{x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\left(e^{2 x} - 1\right) e^{- x}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(e^{2 x} - 1\right)}{\frac{d}{d x} x e^{x}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{2 e^{2 x}}{x e^{x} + e^{x}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{2}{x e^{x} + e^{x}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{2}{x e^{x} + e^{x}}\right)$$
=
$$2$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /   -x    x\
     |- e   + e |
 lim |----------|
x->0+\    x     /
$$\lim_{x \to 0^+}\left(\frac{e^{x} - e^{- x}}{x}\right)$$
2
$$2$$
= 2.0
     /   -x    x\
     |- e   + e |
 lim |----------|
x->0-\    x     /
$$\lim_{x \to 0^-}\left(\frac{e^{x} - e^{- x}}{x}\right)$$
2
$$2$$
= 2.0
= 2.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{e^{x} - e^{- x}}{x}\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{e^{x} - e^{- x}}{x}\right) = 2$$
$$\lim_{x \to \infty}\left(\frac{e^{x} - e^{- x}}{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{e^{x} - e^{- x}}{x}\right) = \frac{-1 + e^{2}}{e}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{e^{x} - e^{- x}}{x}\right) = \frac{-1 + e^{2}}{e}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{e^{x} - e^{- x}}{x}\right) = \infty$$
More at x→-oo
Rapid solution [src]
2
$$2$$
Numerical answer [src]
2.0
2.0
The graph
Limit of the function (-exp(-x)+exp(x))/x