Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-1+3*x)/(5+x^2+7*x)
Limit of (7+x+x^2)/(-1+e^x)
Limit of ((-2+x)/(1+3*x))^(5*x)
Limit of (-tan(2*x)+sin(2*x))/x^3
Integral of d{x}
:
-exp(-x)
Derivative of
:
-exp(-x)
Identical expressions
-exp(-x)
minus exponent of ( minus x)
-exp-x
Similar expressions
-exp(x)
exp(-x)
(-exp(-x^2)+exp(x^2))/x
Limit of the function
/
-exp(-x)
Limit of the function -exp(-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ -x\ lim \-e / x->oo
$$\lim_{x \to \infty}\left(- e^{- x}\right)$$
Limit(-exp(-x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- e^{- x}\right) = 0$$
$$\lim_{x \to 0^-}\left(- e^{- x}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- e^{- x}\right) = -1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- e^{- x}\right) = - \frac{1}{e}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- e^{- x}\right) = - \frac{1}{e}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- e^{- x}\right) = -\infty$$
More at x→-oo
The graph