Mister Exam

Other calculators:


-cos(x)

Limit of the function -cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (-cos(x))
x->0+         
$$\lim_{x \to 0^+}\left(- \cos{\left(x \right)}\right)$$
Limit(-cos(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (-cos(x))
x->0+         
$$\lim_{x \to 0^+}\left(- \cos{\left(x \right)}\right)$$
-1
$$-1$$
= -1.0
 lim (-cos(x))
x->0-         
$$\lim_{x \to 0^-}\left(- \cos{\left(x \right)}\right)$$
-1
$$-1$$
= -1.0
= -1.0
Rapid solution [src]
-1
$$-1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(- \cos{\left(x \right)}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \cos{\left(x \right)}\right) = -1$$
$$\lim_{x \to \infty}\left(- \cos{\left(x \right)}\right) = \left\langle -1, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(- \cos{\left(x \right)}\right) = - \cos{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \cos{\left(x \right)}\right) = - \cos{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \cos{\left(x \right)}\right) = \left\langle -1, 1\right\rangle$$
More at x→-oo
Numerical answer [src]
-1.0
-1.0
The graph
Limit of the function -cos(x)