Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of n*(1+(1+n)^2)/((1+n)*(1+n^2))
Limit of -2+|-2+x|/x
Limit of (1+x^2+9*x)/(-5+2*x+7*x^2)
Limit of (-9+x^2)/(-3-8*x+3*x^2)
Integral of d{x}
:
log(x+sqrt(1+x^2))
Derivative of
:
log(x+sqrt(1+x^2))
Graphing y =
:
log(x+sqrt(1+x^2))
Identical expressions
log(x+sqrt(one +x^ two))
logarithm of (x plus square root of (1 plus x squared ))
logarithm of (x plus square root of (one plus x to the power of two))
log(x+√(1+x^2))
log(x+sqrt(1+x2))
logx+sqrt1+x2
log(x+sqrt(1+x²))
log(x+sqrt(1+x to the power of 2))
logx+sqrt1+x^2
Similar expressions
log(x+sqrt(1-x^2))
log(x-sqrt(1+x^2))
Limit of the function
/
log(x+sqrt(1+x^2))
Limit of the function log(x+sqrt(1+x^2))
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ ________\ | / 2 | lim log\x + \/ 1 + x / x->-oo
lim
x
→
−
∞
log
(
x
+
x
2
+
1
)
\lim_{x \to -\infty} \log{\left(x + \sqrt{x^{2} + 1} \right)}
x
→
−
∞
lim
lo
g
(
x
+
x
2
+
1
)
Limit(log(x + sqrt(1 + x^2)), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
5
-5
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
−
∞
log
(
x
+
x
2
+
1
)
=
−
∞
\lim_{x \to -\infty} \log{\left(x + \sqrt{x^{2} + 1} \right)} = -\infty
x
→
−
∞
lim
lo
g
(
x
+
x
2
+
1
)
=
−
∞
lim
x
→
∞
log
(
x
+
x
2
+
1
)
=
∞
\lim_{x \to \infty} \log{\left(x + \sqrt{x^{2} + 1} \right)} = \infty
x
→
∞
lim
lo
g
(
x
+
x
2
+
1
)
=
∞
More at x→oo
lim
x
→
0
−
log
(
x
+
x
2
+
1
)
=
0
\lim_{x \to 0^-} \log{\left(x + \sqrt{x^{2} + 1} \right)} = 0
x
→
0
−
lim
lo
g
(
x
+
x
2
+
1
)
=
0
More at x→0 from the left
lim
x
→
0
+
log
(
x
+
x
2
+
1
)
=
0
\lim_{x \to 0^+} \log{\left(x + \sqrt{x^{2} + 1} \right)} = 0
x
→
0
+
lim
lo
g
(
x
+
x
2
+
1
)
=
0
More at x→0 from the right
lim
x
→
1
−
log
(
x
+
x
2
+
1
)
=
log
(
1
+
2
)
\lim_{x \to 1^-} \log{\left(x + \sqrt{x^{2} + 1} \right)} = \log{\left(1 + \sqrt{2} \right)}
x
→
1
−
lim
lo
g
(
x
+
x
2
+
1
)
=
lo
g
(
1
+
2
)
More at x→1 from the left
lim
x
→
1
+
log
(
x
+
x
2
+
1
)
=
log
(
1
+
2
)
\lim_{x \to 1^+} \log{\left(x + \sqrt{x^{2} + 1} \right)} = \log{\left(1 + \sqrt{2} \right)}
x
→
1
+
lim
lo
g
(
x
+
x
2
+
1
)
=
lo
g
(
1
+
2
)
More at x→1 from the right
Rapid solution
[src]
-oo
−
∞
-\infty
−
∞
Expand and simplify
The graph