Mister Exam

Other calculators


log(x+sqrt(1+x^2))

Derivative of log(x+sqrt(1+x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /       ________\
   |      /      2 |
log\x + \/  1 + x  /
$$\log{\left(x + \sqrt{x^{2} + 1} \right)}$$
  /   /       ________\\
d |   |      /      2 ||
--\log\x + \/  1 + x  //
dx                      
$$\frac{d}{d x} \log{\left(x + \sqrt{x^{2} + 1} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        The result of the chain rule is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
         x     
1 + -----------
       ________
      /      2 
    \/  1 + x  
---------------
       ________
      /      2 
x + \/  1 + x  
$$\frac{\frac{x}{\sqrt{x^{2} + 1}} + 1}{x + \sqrt{x^{2} + 1}}$$
The second derivative [src]
 /                               2\ 
 |        2     /         x     \ | 
 |       x      |1 + -----------| | 
 |-1 + ------   |       ________| | 
 |          2   |      /      2 | | 
 |     1 + x    \    \/  1 + x  / | 
-|----------- + ------------------| 
 |   ________           ________  | 
 |  /      2           /      2   | 
 \\/  1 + x      x + \/  1 + x    / 
------------------------------------
                 ________           
                /      2            
          x + \/  1 + x             
$$- \frac{\frac{\frac{x^{2}}{x^{2} + 1} - 1}{\sqrt{x^{2} + 1}} + \frac{\left(\frac{x}{\sqrt{x^{2} + 1}} + 1\right)^{2}}{x + \sqrt{x^{2} + 1}}}{x + \sqrt{x^{2} + 1}}$$
The third derivative [src]
                   3                                           /        2  \
  /         x     \        /        2  \     /         x     \ |       x   |
2*|1 + -----------|        |       x   |   3*|1 + -----------|*|-1 + ------|
  |       ________|    3*x*|-1 + ------|     |       ________| |          2|
  |      /      2 |        |          2|     |      /      2 | \     1 + x /
  \    \/  1 + x  /        \     1 + x /     \    \/  1 + x  /              
-------------------- + ----------------- + ---------------------------------
                  2               3/2           ________ /       ________\  
 /       ________\        /     2\             /      2  |      /      2 |  
 |      /      2 |        \1 + x /           \/  1 + x  *\x + \/  1 + x  /  
 \x + \/  1 + x  /                                                          
----------------------------------------------------------------------------
                                     ________                               
                                    /      2                                
                              x + \/  1 + x                                 
$$\frac{\frac{3 x \left(\frac{x^{2}}{x^{2} + 1} - 1\right)}{\left(x^{2} + 1\right)^{\frac{3}{2}}} + \frac{3 \left(\frac{x}{\sqrt{x^{2} + 1}} + 1\right) \left(\frac{x^{2}}{x^{2} + 1} - 1\right)}{\left(x + \sqrt{x^{2} + 1}\right) \sqrt{x^{2} + 1}} + \frac{2 \left(\frac{x}{\sqrt{x^{2} + 1}} + 1\right)^{3}}{\left(x + \sqrt{x^{2} + 1}\right)^{2}}}{x + \sqrt{x^{2} + 1}}$$
The graph
Derivative of log(x+sqrt(1+x^2))