/ ________\ | / 2 | log\x + \/ 1 + x /
/ / ________\\ d | | / 2 || --\log\x + \/ 1 + x // dx
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
x
1 + -----------
________
/ 2
\/ 1 + x
---------------
________
/ 2
x + \/ 1 + x
/ 2\
| 2 / x \ |
| x |1 + -----------| |
|-1 + ------ | ________| |
| 2 | / 2 | |
| 1 + x \ \/ 1 + x / |
-|----------- + ------------------|
| ________ ________ |
| / 2 / 2 |
\\/ 1 + x x + \/ 1 + x /
------------------------------------
________
/ 2
x + \/ 1 + x
3 / 2 \
/ x \ / 2 \ / x \ | x |
2*|1 + -----------| | x | 3*|1 + -----------|*|-1 + ------|
| ________| 3*x*|-1 + ------| | ________| | 2|
| / 2 | | 2| | / 2 | \ 1 + x /
\ \/ 1 + x / \ 1 + x / \ \/ 1 + x /
-------------------- + ----------------- + ---------------------------------
2 3/2 ________ / ________\
/ ________\ / 2\ / 2 | / 2 |
| / 2 | \1 + x / \/ 1 + x *\x + \/ 1 + x /
\x + \/ 1 + x /
----------------------------------------------------------------------------
________
/ 2
x + \/ 1 + x