Mister Exam

Other calculators:


log(x)*tan(x)

Limit of the function log(x)*tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (log(x)*tan(x))
x->0+               
$$\lim_{x \to 0^+}\left(\log{\left(x \right)} \tan{\left(x \right)}\right)$$
Limit(log(x)*tan(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (log(x)*tan(x))
x->0+               
$$\lim_{x \to 0^+}\left(\log{\left(x \right)} \tan{\left(x \right)}\right)$$
0
$$0$$
= -0.00180426482816838
 lim (log(x)*tan(x))
x->0-               
$$\lim_{x \to 0^-}\left(\log{\left(x \right)} \tan{\left(x \right)}\right)$$
0
$$0$$
= (0.00189029691587908 - 0.000778839315952768j)
= (0.00189029691587908 - 0.000778839315952768j)
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\log{\left(x \right)} \tan{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\log{\left(x \right)} \tan{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(\log{\left(x \right)} \tan{\left(x \right)}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\log{\left(x \right)} \tan{\left(x \right)}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\log{\left(x \right)} \tan{\left(x \right)}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\log{\left(x \right)} \tan{\left(x \right)}\right)$$
More at x→-oo
Numerical answer [src]
-0.00180426482816838
-0.00180426482816838
The graph
Limit of the function log(x)*tan(x)