Mister Exam

Other calculators:


log(x)/log(2)

Limit of the function log(x)/log(2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /log(x)\
 lim |------|
x->oo\log(2)/
limx(log(x)log(2))\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right)
Limit(log(x)/log(2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10105-5
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(log(x)log(2))=\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = \infty
limx0(log(x)log(2))=\lim_{x \to 0^-}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = -\infty
More at x→0 from the left
limx0+(log(x)log(2))=\lim_{x \to 0^+}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = -\infty
More at x→0 from the right
limx1(log(x)log(2))=0\lim_{x \to 1^-}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = 0
More at x→1 from the left
limx1+(log(x)log(2))=0\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = 0
More at x→1 from the right
limx(log(x)log(2))=\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = \infty
More at x→-oo
The graph
Limit of the function log(x)/log(2)