Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+x^2-4*x)/(1+2*x)
Limit of (-asin(x)+2*x)/(2*x+atan(x))
Limit of (-2+2*x^2+log(x))/(e^x-e)
Limit of (-2+x)^(-2)
Derivative of
:
log(x)/log(2)
Identical expressions
log(x)/log(two)
logarithm of (x) divide by logarithm of (2)
logarithm of (x) divide by logarithm of (two)
logx/log2
log(x) divide by log(2)
Similar expressions
log(x)/log(2*x)
(3+log(x))/log(2+x)
Limit of the function
/
log(x)/log(2)
Limit of the function log(x)/log(2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/log(x)\ lim |------| x->oo\log(2)/
lim
x
→
∞
(
log
(
x
)
log
(
2
)
)
\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right)
x
→
∞
lim
(
lo
g
(
2
)
lo
g
(
x
)
)
Limit(log(x)/log(2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
5
-5
Plot the graph
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
log
(
x
)
log
(
2
)
)
=
∞
\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = \infty
x
→
∞
lim
(
lo
g
(
2
)
lo
g
(
x
)
)
=
∞
lim
x
→
0
−
(
log
(
x
)
log
(
2
)
)
=
−
∞
\lim_{x \to 0^-}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = -\infty
x
→
0
−
lim
(
lo
g
(
2
)
lo
g
(
x
)
)
=
−
∞
More at x→0 from the left
lim
x
→
0
+
(
log
(
x
)
log
(
2
)
)
=
−
∞
\lim_{x \to 0^+}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = -\infty
x
→
0
+
lim
(
lo
g
(
2
)
lo
g
(
x
)
)
=
−
∞
More at x→0 from the right
lim
x
→
1
−
(
log
(
x
)
log
(
2
)
)
=
0
\lim_{x \to 1^-}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = 0
x
→
1
−
lim
(
lo
g
(
2
)
lo
g
(
x
)
)
=
0
More at x→1 from the left
lim
x
→
1
+
(
log
(
x
)
log
(
2
)
)
=
0
\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = 0
x
→
1
+
lim
(
lo
g
(
2
)
lo
g
(
x
)
)
=
0
More at x→1 from the right
lim
x
→
−
∞
(
log
(
x
)
log
(
2
)
)
=
∞
\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right) = \infty
x
→
−
∞
lim
(
lo
g
(
2
)
lo
g
(
x
)
)
=
∞
More at x→-oo
The graph