Mister Exam

Other calculators:


log(1+x)/x^2

Limit of the function log(1+x)/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /log(1 + x)\
 lim |----------|
x->oo|     2    |
     \    x     /
$$\lim_{x \to \infty}\left(\frac{\log{\left(x + 1 \right)}}{x^{2}}\right)$$
Limit(log(1 + x)/x^2, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty} \log{\left(x + 1 \right)} = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} x^{2} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{\log{\left(x + 1 \right)}}{x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(x + 1 \right)}}{\frac{d}{d x} x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{1}{2 x \left(x + 1\right)}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \frac{1}{x + 1}}{\frac{d}{d x} 2 x}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{1}{2 \left(x^{2} + 2 x + 1\right)}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{1}{2 \left(x^{2} + 2 x + 1\right)}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\log{\left(x + 1 \right)}}{x^{2}}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{\log{\left(x + 1 \right)}}{x^{2}}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\log{\left(x + 1 \right)}}{x^{2}}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\log{\left(x + 1 \right)}}{x^{2}}\right) = \log{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\log{\left(x + 1 \right)}}{x^{2}}\right) = \log{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\log{\left(x + 1 \right)}}{x^{2}}\right) = 0$$
More at x→-oo
The graph
Limit of the function log(1+x)/x^2