Mister Exam

Other calculators:


log((1+x)/(1-x))

Limit of the function log((1+x)/(1-x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /1 + x\
 lim log|-----|
x->oo   \1 - x/
$$\lim_{x \to \infty} \log{\left(\frac{x + 1}{1 - x} \right)}$$
Limit(log((1 + x)/(1 - x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \log{\left(\frac{x + 1}{1 - x} \right)} = i \pi$$
$$\lim_{x \to 0^-} \log{\left(\frac{x + 1}{1 - x} \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(\frac{x + 1}{1 - x} \right)} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \log{\left(\frac{x + 1}{1 - x} \right)} = \infty$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(\frac{x + 1}{1 - x} \right)} = \infty$$
More at x→1 from the right
$$\lim_{x \to -\infty} \log{\left(\frac{x + 1}{1 - x} \right)} = i \pi$$
More at x→-oo
Rapid solution [src]
pi*I
$$i \pi$$
The graph
Limit of the function log((1+x)/(1-x))