Mister Exam

Other calculators


log((1+x)/(1-x))

Derivative of log((1+x)/(1-x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /1 + x\
log|-----|
   \1 - x/
$$\log{\left(\frac{x + 1}{1 - x} \right)}$$
log((1 + x)/(1 - x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        /  1      1 + x  \
(1 - x)*|----- + --------|
        |1 - x          2|
        \        (1 - x) /
--------------------------
          1 + x           
$$\frac{\left(1 - x\right) \left(\frac{1}{1 - x} + \frac{x + 1}{\left(1 - x\right)^{2}}\right)}{x + 1}$$
The second derivative [src]
/    1 + x \ /    1       1   \
|1 - ------|*|- ----- - ------|
\    -1 + x/ \  1 + x   -1 + x/
-------------------------------
             1 + x             
$$\frac{\left(1 - \frac{x + 1}{x - 1}\right) \left(- \frac{1}{x + 1} - \frac{1}{x - 1}\right)}{x + 1}$$
The third derivative [src]
  /    1 + x \ /   1           1              1        \
2*|1 - ------|*|-------- + --------- + ----------------|
  \    -1 + x/ |       2           2   (1 + x)*(-1 + x)|
               \(1 + x)    (-1 + x)                    /
--------------------------------------------------------
                         1 + x                          
$$\frac{2 \left(1 - \frac{x + 1}{x - 1}\right) \left(\frac{1}{\left(x + 1\right)^{2}} + \frac{1}{\left(x - 1\right) \left(x + 1\right)} + \frac{1}{\left(x - 1\right)^{2}}\right)}{x + 1}$$
The graph
Derivative of log((1+x)/(1-x))