Mister Exam

Other calculators:


log(1/x)

Limit of the function log(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /  1\
 lim log|1*-|
x->oo   \  x/
limxlog(11x)\lim_{x \to \infty} \log{\left(1 \cdot \frac{1}{x} \right)}
Limit(log(1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10105-5
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limxlog(11x)=\lim_{x \to \infty} \log{\left(1 \cdot \frac{1}{x} \right)} = -\infty
limx0log(11x)=\lim_{x \to 0^-} \log{\left(1 \cdot \frac{1}{x} \right)} = \infty
More at x→0 from the left
limx0+log(11x)=\lim_{x \to 0^+} \log{\left(1 \cdot \frac{1}{x} \right)} = \infty
More at x→0 from the right
limx1log(11x)=0\lim_{x \to 1^-} \log{\left(1 \cdot \frac{1}{x} \right)} = 0
More at x→1 from the left
limx1+log(11x)=0\lim_{x \to 1^+} \log{\left(1 \cdot \frac{1}{x} \right)} = 0
More at x→1 from the right
limxlog(11x)=\lim_{x \to -\infty} \log{\left(1 \cdot \frac{1}{x} \right)} = -\infty
More at x→-oo
The graph
Limit of the function log(1/x)