Mister Exam

Other calculators:


log(n)/n

Limit of the function log(n)/n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /log(n)\
 lim |------|
n->oo\  n   /
$$\lim_{n \to \infty}\left(\frac{\log{\left(n \right)}}{n}\right)$$
Limit(log(n)/n, n, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{n \to \infty} \log{\left(n \right)} = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty} n = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(\frac{\log{\left(n \right)}}{n}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \log{\left(n \right)}}{\frac{d}{d n} n}\right)$$
=
$$\lim_{n \to \infty} \frac{1}{n}$$
=
$$\lim_{n \to \infty} \frac{1}{n}$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
0
$$0$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{\log{\left(n \right)}}{n}\right) = 0$$
$$\lim_{n \to 0^-}\left(\frac{\log{\left(n \right)}}{n}\right) = \infty$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{\log{\left(n \right)}}{n}\right) = -\infty$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{\log{\left(n \right)}}{n}\right) = 0$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{\log{\left(n \right)}}{n}\right) = 0$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{\log{\left(n \right)}}{n}\right) = 0$$
More at n→-oo
The graph
Limit of the function log(n)/n