Mister Exam

Other calculators:

Limit of the function log(factorial(x))/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /log(x!)\
 lim |-------|
x->oo|    2  |
     \   x   /
limx(log(x!)x2)\lim_{x \to \infty}\left(\frac{\log{\left(x! \right)}}{x^{2}}\right)
Limit(log(factorial(x))/x^2, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limxlog(x!)=\lim_{x \to \infty} \log{\left(x! \right)} = \infty
and limit for the denominator is
limxx2=\lim_{x \to \infty} x^{2} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(log(x!)x2)\lim_{x \to \infty}\left(\frac{\log{\left(x! \right)}}{x^{2}}\right)
=
limx(ddxlog(x!)ddxx2)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(x! \right)}}{\frac{d}{d x} x^{2}}\right)
=
limx(Γ(x+1)polygamma(0,x+1)2xx!)\lim_{x \to \infty}\left(\frac{\Gamma\left(x + 1\right) \operatorname{polygamma}{\left(0,x + 1 \right)}}{2 x x!}\right)
=
limx(ddxpolygamma(0,x+1)ddx2xx!Γ(x+1))\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \operatorname{polygamma}{\left(0,x + 1 \right)}}{\frac{d}{d x} \frac{2 x x!}{\Gamma\left(x + 1\right)}}\right)
=
limx(polygamma(1,x+1)2xx!polygamma(0,x+1)Γ(x+1)+2xpolygamma(0,x+1)+2x!Γ(x+1))\lim_{x \to \infty}\left(\frac{\operatorname{polygamma}{\left(1,x + 1 \right)}}{- \frac{2 x x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}{\left(0,x + 1 \right)} + \frac{2 x!}{\Gamma\left(x + 1\right)}}\right)
=
limx(ddx12xx!polygamma(0,x+1)Γ(x+1)+2xpolygamma(0,x+1)+2x!Γ(x+1)ddx1polygamma(1,x+1))\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \frac{1}{- \frac{2 x x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}{\left(0,x + 1 \right)} + \frac{2 x!}{\Gamma\left(x + 1\right)}}}{\frac{d}{d x} \frac{1}{\operatorname{polygamma}{\left(1,x + 1 \right)}}}\right)
=
limx((2xx!polygamma2(0,x+1)Γ(x+1)+2xx!polygamma(1,x+1)Γ(x+1)+2xpolygamma2(0,x+1)2xpolygamma(1,x+1)+4x!polygamma(0,x+1)Γ(x+1)4polygamma(0,x+1))polygamma2(1,x+1)(2xx!polygamma(0,x+1)Γ(x+1)+2xpolygamma(0,x+1)+2x!Γ(x+1))2polygamma(2,x+1))\lim_{x \to \infty}\left(- \frac{\left(- \frac{2 x x! \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + \frac{2 x x! \operatorname{polygamma}{\left(1,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}^{2}{\left(0,x + 1 \right)} - 2 x \operatorname{polygamma}{\left(1,x + 1 \right)} + \frac{4 x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} - 4 \operatorname{polygamma}{\left(0,x + 1 \right)}\right) \operatorname{polygamma}^{2}{\left(1,x + 1 \right)}}{\left(- \frac{2 x x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}{\left(0,x + 1 \right)} + \frac{2 x!}{\Gamma\left(x + 1\right)}\right)^{2} \operatorname{polygamma}{\left(2,x + 1 \right)}}\right)
=
limx((xx!polygamma2(0,x+1)2Γ(x+1)+xx!polygamma(1,x+1)2Γ(x+1)+xpolygamma2(0,x+1)2xpolygamma(1,x+1)2+x!polygamma(0,x+1)Γ(x+1)polygamma(0,x+1))polygamma2(1,x+1)polygamma(2,x+1))\lim_{x \to \infty}\left(- \frac{\left(- \frac{x x! \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x x! \operatorname{polygamma}{\left(1,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2} - \frac{x \operatorname{polygamma}{\left(1,x + 1 \right)}}{2} + \frac{x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} - \operatorname{polygamma}{\left(0,x + 1 \right)}\right) \operatorname{polygamma}^{2}{\left(1,x + 1 \right)}}{\operatorname{polygamma}{\left(2,x + 1 \right)}}\right)
=
limx((xx!polygamma2(0,x+1)2Γ(x+1)+xx!polygamma(1,x+1)2Γ(x+1)+xpolygamma2(0,x+1)2xpolygamma(1,x+1)2+x!polygamma(0,x+1)Γ(x+1)polygamma(0,x+1))polygamma2(1,x+1)polygamma(2,x+1))\lim_{x \to \infty}\left(- \frac{\left(- \frac{x x! \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x x! \operatorname{polygamma}{\left(1,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2} - \frac{x \operatorname{polygamma}{\left(1,x + 1 \right)}}{2} + \frac{x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} - \operatorname{polygamma}{\left(0,x + 1 \right)}\right) \operatorname{polygamma}^{2}{\left(1,x + 1 \right)}}{\operatorname{polygamma}{\left(2,x + 1 \right)}}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(log(x!)x2)=0\lim_{x \to \infty}\left(\frac{\log{\left(x! \right)}}{x^{2}}\right) = 0
limx0(log(x!)x2)=\lim_{x \to 0^-}\left(\frac{\log{\left(x! \right)}}{x^{2}}\right) = \infty
More at x→0 from the left
limx0+(log(x!)x2)=\lim_{x \to 0^+}\left(\frac{\log{\left(x! \right)}}{x^{2}}\right) = -\infty
More at x→0 from the right
limx1(log(x!)x2)=0\lim_{x \to 1^-}\left(\frac{\log{\left(x! \right)}}{x^{2}}\right) = 0
More at x→1 from the left
limx1+(log(x!)x2)=0\lim_{x \to 1^+}\left(\frac{\log{\left(x! \right)}}{x^{2}}\right) = 0
More at x→1 from the right
limx(log(x!)x2)=0\lim_{x \to -\infty}\left(\frac{\log{\left(x! \right)}}{x^{2}}\right) = 0
More at x→-oo