We have indeterminateness of type
oo/oo, i.e. limit for the numerator is
lim x → ∞ log ( x ! ) = ∞ \lim_{x \to \infty} \log{\left(x! \right)} = \infty x → ∞ lim log ( x ! ) = ∞ and limit for the denominator is
lim x → ∞ x 2 = ∞ \lim_{x \to \infty} x^{2} = \infty x → ∞ lim x 2 = ∞ Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
lim x → ∞ ( log ( x ! ) x 2 ) \lim_{x \to \infty}\left(\frac{\log{\left(x! \right)}}{x^{2}}\right) x → ∞ lim ( x 2 log ( x ! ) ) =
lim x → ∞ ( d d x log ( x ! ) d d x x 2 ) \lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(x! \right)}}{\frac{d}{d x} x^{2}}\right) x → ∞ lim ( d x d x 2 d x d log ( x ! ) ) =
lim x → ∞ ( Γ ( x + 1 ) polygamma ( 0 , x + 1 ) 2 x x ! ) \lim_{x \to \infty}\left(\frac{\Gamma\left(x + 1\right) \operatorname{polygamma}{\left(0,x + 1 \right)}}{2 x x!}\right) x → ∞ lim ( 2 xx ! Γ ( x + 1 ) polygamma ( 0 , x + 1 ) ) =
lim x → ∞ ( d d x polygamma ( 0 , x + 1 ) d d x 2 x x ! Γ ( x + 1 ) ) \lim_{x \to \infty}\left(\frac{\frac{d}{d x} \operatorname{polygamma}{\left(0,x + 1 \right)}}{\frac{d}{d x} \frac{2 x x!}{\Gamma\left(x + 1\right)}}\right) x → ∞ lim ( d x d Γ ( x + 1 ) 2 xx ! d x d polygamma ( 0 , x + 1 ) ) =
lim x → ∞ ( polygamma ( 1 , x + 1 ) − 2 x x ! polygamma ( 0 , x + 1 ) Γ ( x + 1 ) + 2 x polygamma ( 0 , x + 1 ) + 2 x ! Γ ( x + 1 ) ) \lim_{x \to \infty}\left(\frac{\operatorname{polygamma}{\left(1,x + 1 \right)}}{- \frac{2 x x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}{\left(0,x + 1 \right)} + \frac{2 x!}{\Gamma\left(x + 1\right)}}\right) x → ∞ lim − Γ ( x + 1 ) 2 xx ! polygamma ( 0 , x + 1 ) + 2 x polygamma ( 0 , x + 1 ) + Γ ( x + 1 ) 2 x ! polygamma ( 1 , x + 1 ) =
lim x → ∞ ( d d x 1 − 2 x x ! polygamma ( 0 , x + 1 ) Γ ( x + 1 ) + 2 x polygamma ( 0 , x + 1 ) + 2 x ! Γ ( x + 1 ) d d x 1 polygamma ( 1 , x + 1 ) ) \lim_{x \to \infty}\left(\frac{\frac{d}{d x} \frac{1}{- \frac{2 x x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}{\left(0,x + 1 \right)} + \frac{2 x!}{\Gamma\left(x + 1\right)}}}{\frac{d}{d x} \frac{1}{\operatorname{polygamma}{\left(1,x + 1 \right)}}}\right) x → ∞ lim d x d polygamma ( 1 , x + 1 ) 1 d x d − Γ ( x + 1 ) 2 xx ! polygamma ( 0 , x + 1 ) + 2 x polygamma ( 0 , x + 1 ) + Γ ( x + 1 ) 2 x ! 1 =
lim x → ∞ ( − ( − 2 x x ! polygamma 2 ( 0 , x + 1 ) Γ ( x + 1 ) + 2 x x ! polygamma ( 1 , x + 1 ) Γ ( x + 1 ) + 2 x polygamma 2 ( 0 , x + 1 ) − 2 x polygamma ( 1 , x + 1 ) + 4 x ! polygamma ( 0 , x + 1 ) Γ ( x + 1 ) − 4 polygamma ( 0 , x + 1 ) ) polygamma 2 ( 1 , x + 1 ) ( − 2 x x ! polygamma ( 0 , x + 1 ) Γ ( x + 1 ) + 2 x polygamma ( 0 , x + 1 ) + 2 x ! Γ ( x + 1 ) ) 2 polygamma ( 2 , x + 1 ) ) \lim_{x \to \infty}\left(- \frac{\left(- \frac{2 x x! \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + \frac{2 x x! \operatorname{polygamma}{\left(1,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}^{2}{\left(0,x + 1 \right)} - 2 x \operatorname{polygamma}{\left(1,x + 1 \right)} + \frac{4 x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} - 4 \operatorname{polygamma}{\left(0,x + 1 \right)}\right) \operatorname{polygamma}^{2}{\left(1,x + 1 \right)}}{\left(- \frac{2 x x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}{\left(0,x + 1 \right)} + \frac{2 x!}{\Gamma\left(x + 1\right)}\right)^{2} \operatorname{polygamma}{\left(2,x + 1 \right)}}\right) x → ∞ lim − ( − Γ ( x + 1 ) 2 xx ! polygamma ( 0 , x + 1 ) + 2 x polygamma ( 0 , x + 1 ) + Γ ( x + 1 ) 2 x ! ) 2 polygamma ( 2 , x + 1 ) ( − Γ ( x + 1 ) 2 xx ! polygamma 2 ( 0 , x + 1 ) + Γ ( x + 1 ) 2 xx ! polygamma ( 1 , x + 1 ) + 2 x polygamma 2 ( 0 , x + 1 ) − 2 x polygamma ( 1 , x + 1 ) + Γ ( x + 1 ) 4 x ! polygamma ( 0 , x + 1 ) − 4 polygamma ( 0 , x + 1 ) ) polygamma 2 ( 1 , x + 1 ) =
lim x → ∞ ( − ( − x x ! polygamma 2 ( 0 , x + 1 ) 2 Γ ( x + 1 ) + x x ! polygamma ( 1 , x + 1 ) 2 Γ ( x + 1 ) + x polygamma 2 ( 0 , x + 1 ) 2 − x polygamma ( 1 , x + 1 ) 2 + x ! polygamma ( 0 , x + 1 ) Γ ( x + 1 ) − polygamma ( 0 , x + 1 ) ) polygamma 2 ( 1 , x + 1 ) polygamma ( 2 , x + 1 ) ) \lim_{x \to \infty}\left(- \frac{\left(- \frac{x x! \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x x! \operatorname{polygamma}{\left(1,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2} - \frac{x \operatorname{polygamma}{\left(1,x + 1 \right)}}{2} + \frac{x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} - \operatorname{polygamma}{\left(0,x + 1 \right)}\right) \operatorname{polygamma}^{2}{\left(1,x + 1 \right)}}{\operatorname{polygamma}{\left(2,x + 1 \right)}}\right) x → ∞ lim − polygamma ( 2 , x + 1 ) ( − 2Γ ( x + 1 ) xx ! polygamma 2 ( 0 , x + 1 ) + 2Γ ( x + 1 ) xx ! polygamma ( 1 , x + 1 ) + 2 x polygamma 2 ( 0 , x + 1 ) − 2 x polygamma ( 1 , x + 1 ) + Γ ( x + 1 ) x ! polygamma ( 0 , x + 1 ) − polygamma ( 0 , x + 1 ) ) polygamma 2 ( 1 , x + 1 ) =
lim x → ∞ ( − ( − x x ! polygamma 2 ( 0 , x + 1 ) 2 Γ ( x + 1 ) + x x ! polygamma ( 1 , x + 1 ) 2 Γ ( x + 1 ) + x polygamma 2 ( 0 , x + 1 ) 2 − x polygamma ( 1 , x + 1 ) 2 + x ! polygamma ( 0 , x + 1 ) Γ ( x + 1 ) − polygamma ( 0 , x + 1 ) ) polygamma 2 ( 1 , x + 1 ) polygamma ( 2 , x + 1 ) ) \lim_{x \to \infty}\left(- \frac{\left(- \frac{x x! \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x x! \operatorname{polygamma}{\left(1,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2} - \frac{x \operatorname{polygamma}{\left(1,x + 1 \right)}}{2} + \frac{x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} - \operatorname{polygamma}{\left(0,x + 1 \right)}\right) \operatorname{polygamma}^{2}{\left(1,x + 1 \right)}}{\operatorname{polygamma}{\left(2,x + 1 \right)}}\right) x → ∞ lim − polygamma ( 2 , x + 1 ) ( − 2Γ ( x + 1 ) xx ! polygamma 2 ( 0 , x + 1 ) + 2Γ ( x + 1 ) xx ! polygamma ( 1 , x + 1 ) + 2 x polygamma 2 ( 0 , x + 1 ) − 2 x polygamma ( 1 , x + 1 ) + Γ ( x + 1 ) x ! polygamma ( 0 , x + 1 ) − polygamma ( 0 , x + 1 ) ) polygamma 2 ( 1 , x + 1 ) =
0 0 0 It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)