We have indeterminateness of type
oo/oo,
i.e. limit for the numerator is
$$\lim_{x \to \infty} \log{\left(x! \right)} = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} x^{2} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{\log{\left(x! \right)}}{x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(x! \right)}}{\frac{d}{d x} x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\Gamma\left(x + 1\right) \operatorname{polygamma}{\left(0,x + 1 \right)}}{2 x x!}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \operatorname{polygamma}{\left(0,x + 1 \right)}}{\frac{d}{d x} \frac{2 x x!}{\Gamma\left(x + 1\right)}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\operatorname{polygamma}{\left(1,x + 1 \right)}}{- \frac{2 x x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}{\left(0,x + 1 \right)} + \frac{2 x!}{\Gamma\left(x + 1\right)}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \frac{1}{- \frac{2 x x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}{\left(0,x + 1 \right)} + \frac{2 x!}{\Gamma\left(x + 1\right)}}}{\frac{d}{d x} \frac{1}{\operatorname{polygamma}{\left(1,x + 1 \right)}}}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{\left(- \frac{2 x x! \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + \frac{2 x x! \operatorname{polygamma}{\left(1,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}^{2}{\left(0,x + 1 \right)} - 2 x \operatorname{polygamma}{\left(1,x + 1 \right)} + \frac{4 x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} - 4 \operatorname{polygamma}{\left(0,x + 1 \right)}\right) \operatorname{polygamma}^{2}{\left(1,x + 1 \right)}}{\left(- \frac{2 x x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} + 2 x \operatorname{polygamma}{\left(0,x + 1 \right)} + \frac{2 x!}{\Gamma\left(x + 1\right)}\right)^{2} \operatorname{polygamma}{\left(2,x + 1 \right)}}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{\left(- \frac{x x! \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x x! \operatorname{polygamma}{\left(1,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2} - \frac{x \operatorname{polygamma}{\left(1,x + 1 \right)}}{2} + \frac{x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} - \operatorname{polygamma}{\left(0,x + 1 \right)}\right) \operatorname{polygamma}^{2}{\left(1,x + 1 \right)}}{\operatorname{polygamma}{\left(2,x + 1 \right)}}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{\left(- \frac{x x! \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x x! \operatorname{polygamma}{\left(1,x + 1 \right)}}{2 \Gamma\left(x + 1\right)} + \frac{x \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2} - \frac{x \operatorname{polygamma}{\left(1,x + 1 \right)}}{2} + \frac{x! \operatorname{polygamma}{\left(0,x + 1 \right)}}{\Gamma\left(x + 1\right)} - \operatorname{polygamma}{\left(0,x + 1 \right)}\right) \operatorname{polygamma}^{2}{\left(1,x + 1 \right)}}{\operatorname{polygamma}{\left(2,x + 1 \right)}}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)